add autodl
This commit is contained in:
261
AutoDL-Projects/exps/trading/baselines.py
Normal file
261
AutoDL-Projects/exps/trading/baselines.py
Normal file
@@ -0,0 +1,261 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
||||
#####################################################
|
||||
# python exps/trading/baselines.py --alg MLP #
|
||||
# python exps/trading/baselines.py --alg GRU #
|
||||
# python exps/trading/baselines.py --alg LSTM #
|
||||
# python exps/trading/baselines.py --alg ALSTM #
|
||||
# python exps/trading/baselines.py --alg NAIVE-V1 #
|
||||
# python exps/trading/baselines.py --alg NAIVE-V2 #
|
||||
# #
|
||||
# python exps/trading/baselines.py --alg SFM #
|
||||
# python exps/trading/baselines.py --alg XGBoost #
|
||||
# python exps/trading/baselines.py --alg LightGBM #
|
||||
# python exps/trading/baselines.py --alg DoubleE #
|
||||
# python exps/trading/baselines.py --alg TabNet #
|
||||
# #############################
|
||||
# python exps/trading/baselines.py --alg Transformer
|
||||
# python exps/trading/baselines.py --alg TSF
|
||||
# python exps/trading/baselines.py --alg TSF-2x24-drop0_0 --market csi300
|
||||
# python exps/trading/baselines.py --alg TSF-6x32-drop0_0 --market csi300
|
||||
#################################################################################
|
||||
import sys
|
||||
import copy
|
||||
from datetime import datetime
|
||||
import argparse
|
||||
from collections import OrderedDict
|
||||
from pprint import pprint
|
||||
import ruamel.yaml as yaml
|
||||
|
||||
from xautodl.config_utils import arg_str2bool
|
||||
from xautodl.procedures.q_exps import update_gpu
|
||||
from xautodl.procedures.q_exps import update_market
|
||||
from xautodl.procedures.q_exps import run_exp
|
||||
|
||||
import qlib
|
||||
from qlib.utils import init_instance_by_config
|
||||
from qlib.workflow import R
|
||||
from qlib.utils import flatten_dict
|
||||
|
||||
|
||||
def to_drop(config, pos_drop, other_drop):
|
||||
config = copy.deepcopy(config)
|
||||
net = config["task"]["model"]["kwargs"]["net_config"]
|
||||
net["pos_drop"] = pos_drop
|
||||
net["other_drop"] = other_drop
|
||||
return config
|
||||
|
||||
|
||||
def to_layer(config, embed_dim, depth):
|
||||
config = copy.deepcopy(config)
|
||||
net = config["task"]["model"]["kwargs"]["net_config"]
|
||||
net["embed_dim"] = embed_dim
|
||||
net["num_heads"] = [4] * depth
|
||||
net["mlp_hidden_multipliers"] = [4] * depth
|
||||
return config
|
||||
|
||||
|
||||
def extend_transformer_settings(alg2configs, name):
|
||||
config = copy.deepcopy(alg2configs[name])
|
||||
for i in range(1, 9):
|
||||
for j in (6, 12, 24, 32, 48, 64):
|
||||
for k1 in (0, 0.05, 0.1, 0.2, 0.3):
|
||||
for k2 in (0, 0.1):
|
||||
alg2configs[
|
||||
name + "-{:}x{:}-drop{:}_{:}".format(i, j, k1, k2)
|
||||
] = to_layer(to_drop(config, k1, k2), j, i)
|
||||
return alg2configs
|
||||
|
||||
|
||||
def replace_start_time(config, start_time):
|
||||
config = copy.deepcopy(config)
|
||||
xtime = datetime.strptime(start_time, "%Y-%m-%d")
|
||||
config["data_handler_config"]["start_time"] = xtime.date()
|
||||
config["data_handler_config"]["fit_start_time"] = xtime.date()
|
||||
config["task"]["dataset"]["kwargs"]["segments"]["train"][0] = xtime.date()
|
||||
return config
|
||||
|
||||
|
||||
def extend_train_data(alg2configs, name):
|
||||
config = copy.deepcopy(alg2configs[name])
|
||||
start_times = (
|
||||
"2008-01-01",
|
||||
"2008-07-01",
|
||||
"2009-01-01",
|
||||
"2009-07-01",
|
||||
"2010-01-01",
|
||||
"2011-01-01",
|
||||
"2012-01-01",
|
||||
"2013-01-01",
|
||||
)
|
||||
for start_time in start_times:
|
||||
config = replace_start_time(config, start_time)
|
||||
alg2configs[name + "s{:}".format(start_time)] = config
|
||||
return alg2configs
|
||||
|
||||
|
||||
def refresh_record(alg2configs):
|
||||
alg2configs = copy.deepcopy(alg2configs)
|
||||
for key, config in alg2configs.items():
|
||||
xlist = config["task"]["record"]
|
||||
new_list = []
|
||||
for x in xlist:
|
||||
# remove PortAnaRecord and SignalMseRecord
|
||||
if x["class"] != "PortAnaRecord" and x["class"] != "SignalMseRecord":
|
||||
new_list.append(x)
|
||||
## add MultiSegRecord
|
||||
new_list.append(
|
||||
{
|
||||
"class": "MultiSegRecord",
|
||||
"module_path": "qlib.contrib.workflow",
|
||||
"generate_kwargs": {
|
||||
"segments": {"train": "train", "valid": "valid", "test": "test"},
|
||||
"save": True,
|
||||
},
|
||||
}
|
||||
)
|
||||
config["task"]["record"] = new_list
|
||||
return alg2configs
|
||||
|
||||
|
||||
def retrieve_configs():
|
||||
# https://github.com/microsoft/qlib/blob/main/examples/benchmarks/
|
||||
config_dir = (lib_dir / ".." / "configs" / "qlib").resolve()
|
||||
# algorithm to file names
|
||||
alg2names = OrderedDict()
|
||||
alg2names["GRU"] = "workflow_config_gru_Alpha360.yaml"
|
||||
alg2names["LSTM"] = "workflow_config_lstm_Alpha360.yaml"
|
||||
alg2names["MLP"] = "workflow_config_mlp_Alpha360.yaml"
|
||||
# A dual-stage attention-based recurrent neural network for time series prediction, IJCAI-2017
|
||||
alg2names["ALSTM"] = "workflow_config_alstm_Alpha360.yaml"
|
||||
# XGBoost: A Scalable Tree Boosting System, KDD-2016
|
||||
alg2names["XGBoost"] = "workflow_config_xgboost_Alpha360.yaml"
|
||||
# LightGBM: A Highly Efficient Gradient Boosting Decision Tree, NeurIPS-2017
|
||||
alg2names["LightGBM"] = "workflow_config_lightgbm_Alpha360.yaml"
|
||||
# State Frequency Memory (SFM): Stock Price Prediction via Discovering Multi-Frequency Trading Patterns, KDD-2017
|
||||
alg2names["SFM"] = "workflow_config_sfm_Alpha360.yaml"
|
||||
# DoubleEnsemble: A New Ensemble Method Based on Sample Reweighting and Feature Selection for Financial Data Analysis, https://arxiv.org/pdf/2010.01265.pdf
|
||||
alg2names["DoubleE"] = "workflow_config_doubleensemble_Alpha360.yaml"
|
||||
alg2names["TabNet"] = "workflow_config_TabNet_Alpha360.yaml"
|
||||
alg2names["NAIVE-V1"] = "workflow_config_naive_v1_Alpha360.yaml"
|
||||
alg2names["NAIVE-V2"] = "workflow_config_naive_v2_Alpha360.yaml"
|
||||
alg2names["Transformer"] = "workflow_config_transformer_Alpha360.yaml"
|
||||
alg2names["TSF"] = "workflow_config_transformer_basic_Alpha360.yaml"
|
||||
|
||||
# find the yaml paths
|
||||
alg2configs = OrderedDict()
|
||||
print("Start retrieving the algorithm configurations")
|
||||
for idx, (alg, name) in enumerate(alg2names.items()):
|
||||
path = config_dir / name
|
||||
assert path.exists(), "{:} does not exist.".format(path)
|
||||
with open(path) as fp:
|
||||
alg2configs[alg] = yaml.safe_load(fp)
|
||||
print(
|
||||
"The {:02d}/{:02d}-th baseline algorithm is {:9s} ({:}).".format(
|
||||
idx, len(alg2configs), alg, path
|
||||
)
|
||||
)
|
||||
alg2configs = extend_transformer_settings(alg2configs, "TSF")
|
||||
alg2configs = refresh_record(alg2configs)
|
||||
# extend the algorithms by different train-data
|
||||
for name in ("TSF-2x24-drop0_0", "TSF-6x32-drop0_0"):
|
||||
alg2configs = extend_train_data(alg2configs, name)
|
||||
print(
|
||||
"There are {:} algorithms : {:}".format(
|
||||
len(alg2configs), list(alg2configs.keys())
|
||||
)
|
||||
)
|
||||
return alg2configs
|
||||
|
||||
|
||||
def main(alg_name, market, config, times, save_dir, gpu):
|
||||
|
||||
pprint("Run {:}".format(alg_name))
|
||||
config = update_market(config, market)
|
||||
config = update_gpu(config, gpu)
|
||||
|
||||
qlib.init(**config.get("qlib_init"))
|
||||
dataset_config = config.get("task").get("dataset")
|
||||
dataset = init_instance_by_config(dataset_config)
|
||||
pprint(dataset_config)
|
||||
pprint(dataset)
|
||||
|
||||
for irun in range(times):
|
||||
run_exp(
|
||||
config.get("task"),
|
||||
dataset,
|
||||
alg_name,
|
||||
"recorder-{:02d}-{:02d}".format(irun, times),
|
||||
"{:}-{:}".format(save_dir, market),
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
alg2configs = retrieve_configs()
|
||||
|
||||
parser = argparse.ArgumentParser("Baselines")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/qlib-baselines",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--market",
|
||||
type=str,
|
||||
default="all",
|
||||
choices=["csi100", "csi300", "all"],
|
||||
help="The market indicator.",
|
||||
)
|
||||
parser.add_argument("--times", type=int, default=5, help="The repeated run times.")
|
||||
parser.add_argument(
|
||||
"--shared_dataset",
|
||||
type=arg_str2bool,
|
||||
default=False,
|
||||
help="Whether to share the dataset for all algorithms?",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--gpu", type=int, default=0, help="The GPU ID used for train / test."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--alg",
|
||||
type=str,
|
||||
choices=list(alg2configs.keys()),
|
||||
nargs="+",
|
||||
required=True,
|
||||
help="The algorithm name(s).",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if len(args.alg) == 1:
|
||||
main(
|
||||
args.alg[0],
|
||||
args.market,
|
||||
alg2configs[args.alg[0]],
|
||||
args.times,
|
||||
args.save_dir,
|
||||
args.gpu,
|
||||
)
|
||||
elif len(args.alg) > 1:
|
||||
assert args.shared_dataset, "Must allow share dataset"
|
||||
pprint(args)
|
||||
configs = [
|
||||
update_gpu(update_market(alg2configs[name], args.market), args.gpu)
|
||||
for name in args.alg
|
||||
]
|
||||
qlib.init(**configs[0].get("qlib_init"))
|
||||
dataset_config = configs[0].get("task").get("dataset")
|
||||
dataset = init_instance_by_config(dataset_config)
|
||||
pprint(dataset_config)
|
||||
pprint(dataset)
|
||||
for alg_name, config in zip(args.alg, configs):
|
||||
print("Run {:} over {:}".format(alg_name, args.alg))
|
||||
for irun in range(args.times):
|
||||
run_exp(
|
||||
config.get("task"),
|
||||
dataset,
|
||||
alg_name,
|
||||
"recorder-{:02d}-{:02d}".format(irun, args.times),
|
||||
"{:}-{:}".format(args.save_dir, args.market),
|
||||
)
|
175
AutoDL-Projects/exps/trading/organize_results.py
Normal file
175
AutoDL-Projects/exps/trading/organize_results.py
Normal file
@@ -0,0 +1,175 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
||||
#####################################################
|
||||
# python exps/trading/organize_results.py --save_dir outputs/qlib-baselines-all
|
||||
#####################################################
|
||||
import os, re, sys, argparse
|
||||
import numpy as np
|
||||
from typing import List, Text
|
||||
from collections import defaultdict, OrderedDict
|
||||
from pprint import pprint
|
||||
from pathlib import Path
|
||||
import ruamel.yaml as yaml
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
||||
print("LIB-DIR: {:}".format(lib_dir))
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from xautodl.config_utils import arg_str2bool
|
||||
from xautodl.utils.qlib_utils import QResult
|
||||
|
||||
import qlib
|
||||
from qlib.config import REG_CN
|
||||
from qlib.workflow import R
|
||||
|
||||
|
||||
def compare_results(
|
||||
heads, values, names, space=10, separate="& ", verbose=True, sort_key=False
|
||||
):
|
||||
for idx, x in enumerate(heads):
|
||||
assert x == heads[0], "[{:}] \n{:}\nvs\n{:}".format(idx, x, heads[0])
|
||||
new_head = QResult.full_str("Name", space) + separate + heads[0]
|
||||
info_str_dict = dict(head=new_head, lines=[])
|
||||
for name, value in zip(names, values):
|
||||
xline = QResult.full_str(name, space) + separate + value
|
||||
info_str_dict["lines"].append(xline)
|
||||
if verbose:
|
||||
print("\nThere are {:} algorithms.".format(len(values)))
|
||||
print(info_str_dict["head"])
|
||||
if sort_key:
|
||||
lines = sorted(
|
||||
list(zip(values, info_str_dict["lines"])),
|
||||
key=lambda x: float(x[0].split(" ")[0]),
|
||||
)
|
||||
lines = [x[1] for x in lines]
|
||||
else:
|
||||
lines = info_str_dict["lines"]
|
||||
for xline in lines:
|
||||
print(xline + "\\\\")
|
||||
return info_str_dict
|
||||
|
||||
|
||||
def filter_finished(recorders):
|
||||
returned_recorders = dict()
|
||||
not_finished = 0
|
||||
for key, recorder in recorders.items():
|
||||
if recorder.status == "FINISHED":
|
||||
returned_recorders[key] = recorder
|
||||
else:
|
||||
not_finished += 1
|
||||
return returned_recorders, not_finished
|
||||
|
||||
|
||||
def query_info(save_dir, verbose, name_filter, key_map):
|
||||
R.set_uri(save_dir)
|
||||
experiments = R.list_experiments()
|
||||
|
||||
if verbose:
|
||||
print("There are {:} experiments.".format(len(experiments)))
|
||||
qresults = []
|
||||
for idx, (key, experiment) in enumerate(experiments.items()):
|
||||
if experiment.id == "0":
|
||||
continue
|
||||
if (
|
||||
name_filter is not None
|
||||
and re.fullmatch(name_filter, experiment.name) is None
|
||||
):
|
||||
continue
|
||||
recorders = experiment.list_recorders()
|
||||
recorders, not_finished = filter_finished(recorders)
|
||||
if verbose:
|
||||
print(
|
||||
"====>>>> {:02d}/{:02d}-th experiment {:9s} has {:02d}/{:02d} finished recorders.".format(
|
||||
idx + 1,
|
||||
len(experiments),
|
||||
experiment.name,
|
||||
len(recorders),
|
||||
len(recorders) + not_finished,
|
||||
)
|
||||
)
|
||||
result = QResult(experiment.name)
|
||||
for recorder_id, recorder in recorders.items():
|
||||
result.update(recorder.list_metrics(), key_map)
|
||||
result.append_path(
|
||||
os.path.join(recorder.uri, recorder.experiment_id, recorder.id)
|
||||
)
|
||||
if not len(result):
|
||||
print("There are no valid recorders for {:}".format(experiment))
|
||||
continue
|
||||
else:
|
||||
print(
|
||||
"There are {:} valid recorders for {:}".format(
|
||||
len(recorders), experiment.name
|
||||
)
|
||||
)
|
||||
qresults.append(result)
|
||||
return qresults
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser("Show Results")
|
||||
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
nargs="+",
|
||||
default=[],
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--verbose",
|
||||
type=arg_str2bool,
|
||||
default=False,
|
||||
help="Print detailed log information or not.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--name_filter", type=str, default=".*", help="Filter experiment names."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
print("Show results of {:}".format(args.save_dir))
|
||||
if not args.save_dir:
|
||||
raise ValueError("Receive no input directory for [args.save_dir]")
|
||||
|
||||
provider_uri = "~/.qlib/qlib_data/cn_data"
|
||||
qlib.init(provider_uri=provider_uri, region=REG_CN)
|
||||
|
||||
"""
|
||||
key_map = {
|
||||
# "RMSE": "RMSE",
|
||||
"IC": "IC",
|
||||
"ICIR": "ICIR",
|
||||
"Rank IC": "Rank_IC",
|
||||
"Rank ICIR": "Rank_ICIR",
|
||||
# "excess_return_with_cost.annualized_return": "Annualized_Return",
|
||||
# "excess_return_with_cost.information_ratio": "Information_Ratio",
|
||||
# "excess_return_with_cost.max_drawdown": "Max_Drawdown",
|
||||
}
|
||||
"""
|
||||
key_map = dict()
|
||||
for xset in ("train", "valid", "test"):
|
||||
key_map["{:}-mean-IC".format(xset)] = "IC ({:})".format(xset)
|
||||
# key_map["{:}-mean-ICIR".format(xset)] = "ICIR ({:})".format(xset)
|
||||
key_map["{:}-mean-Rank-IC".format(xset)] = "Rank IC ({:})".format(xset)
|
||||
# key_map["{:}-mean-Rank-ICIR".format(xset)] = "Rank ICIR ({:})".format(xset)
|
||||
|
||||
all_qresults = []
|
||||
for save_dir in args.save_dir:
|
||||
qresults = query_info(save_dir, args.verbose, args.name_filter, key_map)
|
||||
all_qresults.extend(qresults)
|
||||
names, head_strs, value_strs = [], [], []
|
||||
for result in all_qresults:
|
||||
head_str, value_str = result.info(list(key_map.values()), verbose=args.verbose)
|
||||
head_strs.append(head_str)
|
||||
value_strs.append(value_str)
|
||||
names.append(result.name)
|
||||
compare_results(
|
||||
head_strs,
|
||||
value_strs,
|
||||
names,
|
||||
space=18,
|
||||
verbose=True,
|
||||
sort_key=True,
|
||||
)
|
206
AutoDL-Projects/exps/trading/workflow_tt.py
Normal file
206
AutoDL-Projects/exps/trading/workflow_tt.py
Normal file
@@ -0,0 +1,206 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
||||
#####################################################
|
||||
# Refer to:
|
||||
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb
|
||||
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py
|
||||
# python exps/trading/workflow_tt.py --gpu 1 --market csi300
|
||||
#####################################################
|
||||
import yaml
|
||||
import argparse
|
||||
|
||||
from xautodl.procedures.q_exps import update_gpu
|
||||
from xautodl.procedures.q_exps import update_market
|
||||
from xautodl.procedures.q_exps import run_exp
|
||||
|
||||
import qlib
|
||||
from qlib.config import C
|
||||
from qlib.config import REG_CN
|
||||
from qlib.utils import init_instance_by_config
|
||||
from qlib.workflow import R
|
||||
|
||||
|
||||
def main(xargs):
|
||||
dataset_config = {
|
||||
"class": "DatasetH",
|
||||
"module_path": "qlib.data.dataset",
|
||||
"kwargs": {
|
||||
"handler": {
|
||||
"class": "Alpha360",
|
||||
"module_path": "qlib.contrib.data.handler",
|
||||
"kwargs": {
|
||||
"start_time": "2008-01-01",
|
||||
"end_time": "2020-08-01",
|
||||
"fit_start_time": "2008-01-01",
|
||||
"fit_end_time": "2014-12-31",
|
||||
"instruments": xargs.market,
|
||||
"infer_processors": [
|
||||
{
|
||||
"class": "RobustZScoreNorm",
|
||||
"kwargs": {"fields_group": "feature", "clip_outlier": True},
|
||||
},
|
||||
{"class": "Fillna", "kwargs": {"fields_group": "feature"}},
|
||||
],
|
||||
"learn_processors": [
|
||||
{"class": "DropnaLabel"},
|
||||
{"class": "CSRankNorm", "kwargs": {"fields_group": "label"}},
|
||||
],
|
||||
"label": ["Ref($close, -2) / Ref($close, -1) - 1"],
|
||||
},
|
||||
},
|
||||
"segments": {
|
||||
"train": ("2008-01-01", "2014-12-31"),
|
||||
"valid": ("2015-01-01", "2016-12-31"),
|
||||
"test": ("2017-01-01", "2020-08-01"),
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
model_config = {
|
||||
"class": "QuantTransformer",
|
||||
"module_path": "xautodl.trade_models.quant_transformer",
|
||||
"kwargs": {
|
||||
"net_config": None,
|
||||
"opt_config": None,
|
||||
"GPU": "0",
|
||||
"metric": "loss",
|
||||
},
|
||||
}
|
||||
|
||||
port_analysis_config = {
|
||||
"strategy": {
|
||||
"class": "TopkDropoutStrategy",
|
||||
"module_path": "qlib.contrib.strategy.strategy",
|
||||
"kwargs": {
|
||||
"topk": 50,
|
||||
"n_drop": 5,
|
||||
},
|
||||
},
|
||||
"backtest": {
|
||||
"verbose": False,
|
||||
"limit_threshold": 0.095,
|
||||
"account": 100000000,
|
||||
"benchmark": "SH000300",
|
||||
"deal_price": "close",
|
||||
"open_cost": 0.0005,
|
||||
"close_cost": 0.0015,
|
||||
"min_cost": 5,
|
||||
},
|
||||
}
|
||||
|
||||
record_config = [
|
||||
{
|
||||
"class": "SignalRecord",
|
||||
"module_path": "qlib.workflow.record_temp",
|
||||
"kwargs": dict(),
|
||||
},
|
||||
{
|
||||
"class": "SigAnaRecord",
|
||||
"module_path": "qlib.workflow.record_temp",
|
||||
"kwargs": dict(ana_long_short=False, ann_scaler=252),
|
||||
},
|
||||
{
|
||||
"class": "PortAnaRecord",
|
||||
"module_path": "qlib.workflow.record_temp",
|
||||
"kwargs": dict(config=port_analysis_config),
|
||||
},
|
||||
]
|
||||
|
||||
provider_uri = "~/.qlib/qlib_data/cn_data"
|
||||
qlib.init(provider_uri=provider_uri, region=REG_CN)
|
||||
|
||||
from qlib.utils import init_instance_by_config
|
||||
|
||||
xconfig = """
|
||||
model:
|
||||
class: SFM
|
||||
module_path: qlib.contrib.model.pytorch_sfm
|
||||
kwargs:
|
||||
d_feat: 6
|
||||
hidden_size: 64
|
||||
output_dim: 32
|
||||
freq_dim: 25
|
||||
dropout_W: 0.5
|
||||
dropout_U: 0.5
|
||||
n_epochs: 20
|
||||
lr: 1e-3
|
||||
batch_size: 1600
|
||||
early_stop: 20
|
||||
eval_steps: 5
|
||||
loss: mse
|
||||
optimizer: adam
|
||||
GPU: 0
|
||||
"""
|
||||
xconfig = """
|
||||
model:
|
||||
class: TabnetModel
|
||||
module_path: qlib.contrib.model.pytorch_tabnet
|
||||
kwargs:
|
||||
d_feat: 360
|
||||
pretrain: True
|
||||
"""
|
||||
xconfig = """
|
||||
model:
|
||||
class: GRU
|
||||
module_path: qlib.contrib.model.pytorch_gru
|
||||
kwargs:
|
||||
d_feat: 6
|
||||
hidden_size: 64
|
||||
num_layers: 4
|
||||
dropout: 0.0
|
||||
n_epochs: 200
|
||||
lr: 0.001
|
||||
early_stop: 20
|
||||
batch_size: 800
|
||||
metric: loss
|
||||
loss: mse
|
||||
GPU: 0
|
||||
"""
|
||||
xconfig = yaml.safe_load(xconfig)
|
||||
model = init_instance_by_config(xconfig["model"])
|
||||
from xautodl.utils.flop_benchmark import count_parameters_in_MB
|
||||
|
||||
# print(count_parameters_in_MB(model.tabnet_model))
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
save_dir = "{:}-{:}".format(xargs.save_dir, xargs.market)
|
||||
dataset = init_instance_by_config(dataset_config)
|
||||
for irun in range(xargs.times):
|
||||
xmodel_config = model_config.copy()
|
||||
xmodel_config = update_gpu(xmodel_config, xargs.gpu)
|
||||
task_config = dict(
|
||||
model=xmodel_config, dataset=dataset_config, record=record_config
|
||||
)
|
||||
|
||||
run_exp(
|
||||
task_config,
|
||||
dataset,
|
||||
xargs.name,
|
||||
"recorder-{:02d}-{:02d}".format(irun, xargs.times),
|
||||
save_dir,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Vanilla Transformable Transformer")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/vtt-runs",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--name", type=str, default="Transformer", help="The experiment name."
|
||||
)
|
||||
parser.add_argument("--times", type=int, default=10, help="The repeated run times.")
|
||||
parser.add_argument(
|
||||
"--gpu", type=int, default=0, help="The GPU ID used for train / test."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--market", type=str, default="all", help="The market indicator."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
Reference in New Issue
Block a user