add autodl
This commit is contained in:
185
AutoDL-Projects/exps/experimental/vis-nats-bench-ws.py
Normal file
185
AutoDL-Projects/exps/experimental/vis-nats-bench-ws.py
Normal file
@@ -0,0 +1,185 @@
|
||||
###############################################################
|
||||
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
|
||||
###############################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
||||
###############################################################
|
||||
# Usage: python exps/experimental/vis-nats-bench-ws.py --search_space tss
|
||||
# Usage: python exps/experimental/vis-nats-bench-ws.py --search_space sss
|
||||
###############################################################
|
||||
import os, gc, sys, time, torch, argparse
|
||||
import numpy as np
|
||||
from typing import List, Text, Dict, Any
|
||||
from shutil import copyfile
|
||||
from collections import defaultdict, OrderedDict
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import matplotlib
|
||||
import seaborn as sns
|
||||
|
||||
matplotlib.use("agg")
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import dict2config, load_config
|
||||
from nats_bench import create
|
||||
from log_utils import time_string
|
||||
|
||||
|
||||
# def fetch_data(root_dir='./output/search', search_space='tss', dataset=None, suffix='-WARMNone'):
|
||||
def fetch_data(
|
||||
root_dir="./output/search", search_space="tss", dataset=None, suffix="-WARM0.3"
|
||||
):
|
||||
ss_dir = "{:}-{:}".format(root_dir, search_space)
|
||||
alg2name, alg2path = OrderedDict(), OrderedDict()
|
||||
seeds = [777, 888, 999]
|
||||
print("\n[fetch data] from {:} on {:}".format(search_space, dataset))
|
||||
if search_space == "tss":
|
||||
alg2name["GDAS"] = "gdas-affine0_BN0-None"
|
||||
alg2name["RSPS"] = "random-affine0_BN0-None"
|
||||
alg2name["DARTS (1st)"] = "darts-v1-affine0_BN0-None"
|
||||
alg2name["DARTS (2nd)"] = "darts-v2-affine0_BN0-None"
|
||||
alg2name["ENAS"] = "enas-affine0_BN0-None"
|
||||
alg2name["SETN"] = "setn-affine0_BN0-None"
|
||||
else:
|
||||
# alg2name['TAS'] = 'tas-affine0_BN0{:}'.format(suffix)
|
||||
# alg2name['FBNetV2'] = 'fbv2-affine0_BN0{:}'.format(suffix)
|
||||
# alg2name['TuNAS'] = 'tunas-affine0_BN0{:}'.format(suffix)
|
||||
alg2name["channel-wise interpolation"] = "tas-affine0_BN0-AWD0.001{:}".format(
|
||||
suffix
|
||||
)
|
||||
alg2name[
|
||||
"masking + Gumbel-Softmax"
|
||||
] = "mask_gumbel-affine0_BN0-AWD0.001{:}".format(suffix)
|
||||
alg2name["masking + sampling"] = "mask_rl-affine0_BN0-AWD0.0{:}".format(suffix)
|
||||
for alg, name in alg2name.items():
|
||||
alg2path[alg] = os.path.join(ss_dir, dataset, name, "seed-{:}-last-info.pth")
|
||||
alg2data = OrderedDict()
|
||||
for alg, path in alg2path.items():
|
||||
alg2data[alg], ok_num = [], 0
|
||||
for seed in seeds:
|
||||
xpath = path.format(seed)
|
||||
if os.path.isfile(xpath):
|
||||
ok_num += 1
|
||||
else:
|
||||
print("This is an invalid path : {:}".format(xpath))
|
||||
continue
|
||||
data = torch.load(xpath, map_location=torch.device("cpu"))
|
||||
data = torch.load(data["last_checkpoint"], map_location=torch.device("cpu"))
|
||||
alg2data[alg].append(data["genotypes"])
|
||||
print("This algorithm : {:} has {:} valid ckps.".format(alg, ok_num))
|
||||
assert ok_num > 0, "Must have at least 1 valid ckps."
|
||||
return alg2data
|
||||
|
||||
|
||||
y_min_s = {
|
||||
("cifar10", "tss"): 90,
|
||||
("cifar10", "sss"): 92,
|
||||
("cifar100", "tss"): 65,
|
||||
("cifar100", "sss"): 65,
|
||||
("ImageNet16-120", "tss"): 36,
|
||||
("ImageNet16-120", "sss"): 40,
|
||||
}
|
||||
|
||||
y_max_s = {
|
||||
("cifar10", "tss"): 94.5,
|
||||
("cifar10", "sss"): 93.3,
|
||||
("cifar100", "tss"): 72,
|
||||
("cifar100", "sss"): 70,
|
||||
("ImageNet16-120", "tss"): 44,
|
||||
("ImageNet16-120", "sss"): 46,
|
||||
}
|
||||
|
||||
name2label = {
|
||||
"cifar10": "CIFAR-10",
|
||||
"cifar100": "CIFAR-100",
|
||||
"ImageNet16-120": "ImageNet-16-120",
|
||||
}
|
||||
|
||||
|
||||
def visualize_curve(api, vis_save_dir, search_space):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dpi, width, height = 250, 5200, 1400
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 16, 16
|
||||
|
||||
def sub_plot_fn(ax, dataset):
|
||||
alg2data = fetch_data(search_space=search_space, dataset=dataset)
|
||||
alg2accuracies = OrderedDict()
|
||||
epochs = 100
|
||||
colors = ["b", "g", "c", "m", "y", "r"]
|
||||
ax.set_xlim(0, epochs)
|
||||
# ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
|
||||
for idx, (alg, data) in enumerate(alg2data.items()):
|
||||
print("plot alg : {:}".format(alg))
|
||||
xs, accuracies = [], []
|
||||
for iepoch in range(epochs + 1):
|
||||
try:
|
||||
structures, accs = [_[iepoch - 1] for _ in data], []
|
||||
except:
|
||||
raise ValueError(
|
||||
"This alg {:} on {:} has invalid checkpoints.".format(
|
||||
alg, dataset
|
||||
)
|
||||
)
|
||||
for structure in structures:
|
||||
info = api.get_more_info(
|
||||
structure,
|
||||
dataset=dataset,
|
||||
hp=90 if api.search_space_name == "size" else 200,
|
||||
is_random=False,
|
||||
)
|
||||
accs.append(info["test-accuracy"])
|
||||
accuracies.append(sum(accs) / len(accs))
|
||||
xs.append(iepoch)
|
||||
alg2accuracies[alg] = accuracies
|
||||
ax.plot(xs, accuracies, c=colors[idx], label="{:}".format(alg))
|
||||
ax.set_xlabel("The searching epoch", fontsize=LabelSize)
|
||||
ax.set_ylabel(
|
||||
"Test accuracy on {:}".format(name2label[dataset]), fontsize=LabelSize
|
||||
)
|
||||
ax.set_title(
|
||||
"Searching results on {:}".format(name2label[dataset]),
|
||||
fontsize=LabelSize + 4,
|
||||
)
|
||||
ax.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
fig, axs = plt.subplots(1, 3, figsize=figsize)
|
||||
datasets = ["cifar10", "cifar100", "ImageNet16-120"]
|
||||
for dataset, ax in zip(datasets, axs):
|
||||
sub_plot_fn(ax, dataset)
|
||||
print("sub-plot {:} on {:} done.".format(dataset, search_space))
|
||||
save_path = (vis_save_dir / "{:}-ws-curve.png".format(search_space)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
||||
print("{:} save into {:}".format(time_string(), save_path))
|
||||
plt.close("all")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="NAS-Bench-X",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="output/vis-nas-bench/nas-algos",
|
||||
help="Folder to save checkpoints and log.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--search_space",
|
||||
type=str,
|
||||
default="tss",
|
||||
choices=["tss", "sss"],
|
||||
help="Choose the search space.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path(args.save_dir)
|
||||
|
||||
api = create(None, args.search_space, fast_mode=True, verbose=False)
|
||||
visualize_curve(api, save_dir, args.search_space)
|
Reference in New Issue
Block a user