add autodl
This commit is contained in:
319
AutoDL-Projects/exps/experimental/GeMOSA/baselines/maml-ft.py
Normal file
319
AutoDL-Projects/exps/experimental/GeMOSA/baselines/maml-ft.py
Normal file
@@ -0,0 +1,319 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/GeMOSA/baselines/maml-ft.py --env_version v1 --hidden_dim 16 --inner_step 5 --device cuda
|
||||
# python exps/GeMOSA/baselines/maml-ft.py --env_version v2 --hidden_dim 16 --inner_step 5 --device cuda
|
||||
# python exps/GeMOSA/baselines/maml-ft.py --env_version v3 --hidden_dim 32 --inner_step 5 --device cuda
|
||||
# python exps/GeMOSA/baselines/maml-ft.py --env_version v4 --hidden_dim 32 --inner_step 5 --device cuda
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "..").resolve()
|
||||
print(lib_dir)
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
)
|
||||
from xautodl.log_utils import time_string
|
||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, Top1AccMetric
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.models.xcore import get_model
|
||||
from xautodl.xlayers import super_core
|
||||
|
||||
|
||||
class MAML:
|
||||
"""A LFNA meta-model that uses the MLP as delta-net."""
|
||||
|
||||
def __init__(
|
||||
self, network, criterion, epochs, meta_lr, inner_lr=0.01, inner_step=1
|
||||
):
|
||||
self.criterion = criterion
|
||||
self.network = network
|
||||
self.meta_optimizer = torch.optim.Adam(
|
||||
self.network.parameters(), lr=meta_lr, amsgrad=True
|
||||
)
|
||||
self.inner_lr = inner_lr
|
||||
self.inner_step = inner_step
|
||||
self._best_info = dict(state_dict=None, iepoch=None, score=None)
|
||||
print("There are {:} weights.".format(self.network.get_w_container().numel()))
|
||||
|
||||
def adapt(self, x, y):
|
||||
# create a container for the future timestamp
|
||||
container = self.network.get_w_container()
|
||||
|
||||
for k in range(0, self.inner_step):
|
||||
y_hat = self.network.forward_with_container(x, container)
|
||||
loss = self.criterion(y_hat, y)
|
||||
grads = torch.autograd.grad(loss, container.parameters())
|
||||
container = container.additive([-self.inner_lr * grad for grad in grads])
|
||||
return container
|
||||
|
||||
def predict(self, x, container=None):
|
||||
if container is not None:
|
||||
y_hat = self.network.forward_with_container(x, container)
|
||||
else:
|
||||
y_hat = self.network(x)
|
||||
return y_hat
|
||||
|
||||
def step(self):
|
||||
torch.nn.utils.clip_grad_norm_(self.network.parameters(), 1.0)
|
||||
self.meta_optimizer.step()
|
||||
|
||||
def zero_grad(self):
|
||||
self.meta_optimizer.zero_grad()
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
self.criterion.load_state_dict(state_dict["criterion"])
|
||||
self.network.load_state_dict(state_dict["network"])
|
||||
self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"])
|
||||
|
||||
def state_dict(self):
|
||||
state_dict = dict()
|
||||
state_dict["criterion"] = self.criterion.state_dict()
|
||||
state_dict["network"] = self.network.state_dict()
|
||||
state_dict["meta_optimizer"] = self.meta_optimizer.state_dict()
|
||||
return state_dict
|
||||
|
||||
def save_best(self, score):
|
||||
success, best_score = self.network.save_best(score)
|
||||
return success, best_score
|
||||
|
||||
def load_best(self):
|
||||
self.network.load_best()
|
||||
|
||||
|
||||
def main(args):
|
||||
prepare_seed(args.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
train_env = get_synthetic_env(mode="train", version=args.env_version)
|
||||
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
|
||||
trainval_env = get_synthetic_env(mode="trainval", version=args.env_version)
|
||||
test_env = get_synthetic_env(mode="test", version=args.env_version)
|
||||
all_env = get_synthetic_env(mode=None, version=args.env_version)
|
||||
logger.log("The training enviornment: {:}".format(train_env))
|
||||
logger.log("The validation enviornment: {:}".format(valid_env))
|
||||
logger.log("The trainval enviornment: {:}".format(trainval_env))
|
||||
logger.log("The total enviornment: {:}".format(all_env))
|
||||
logger.log("The test enviornment: {:}".format(test_env))
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="norm_mlp"),
|
||||
input_dim=all_env.meta_info["input_dim"],
|
||||
output_dim=all_env.meta_info["output_dim"],
|
||||
hidden_dims=[args.hidden_dim] * 2,
|
||||
act_cls="relu",
|
||||
norm_cls="layer_norm_1d",
|
||||
)
|
||||
|
||||
model = get_model(**model_kwargs)
|
||||
model = model.to(args.device)
|
||||
if all_env.meta_info["task"] == "regression":
|
||||
criterion = torch.nn.MSELoss()
|
||||
metric_cls = MSEMetric
|
||||
elif all_env.meta_info["task"] == "classification":
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
metric_cls = Top1AccMetric
|
||||
else:
|
||||
raise ValueError(
|
||||
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
|
||||
)
|
||||
|
||||
maml = MAML(
|
||||
model, criterion, args.epochs, args.meta_lr, args.inner_lr, args.inner_step
|
||||
)
|
||||
|
||||
# meta-training
|
||||
last_success_epoch = 0
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
for iepoch in range(args.epochs):
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
head_str = (
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
|
||||
maml.zero_grad()
|
||||
meta_losses = []
|
||||
for ibatch in range(args.meta_batch):
|
||||
future_idx = random.randint(0, len(trainval_env) - 1)
|
||||
future_t, (future_x, future_y) = trainval_env[future_idx]
|
||||
# -->>
|
||||
seq_times = trainval_env.get_seq_times(future_idx, args.seq_length)
|
||||
_, (allxs, allys) = trainval_env.seq_call(seq_times)
|
||||
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
|
||||
if trainval_env.meta_info["task"] == "classification":
|
||||
allys = allys.view(-1)
|
||||
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
|
||||
future_container = maml.adapt(historical_x, historical_y)
|
||||
|
||||
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
|
||||
future_y_hat = maml.predict(future_x, future_container)
|
||||
future_loss = maml.criterion(future_y_hat, future_y)
|
||||
meta_losses.append(future_loss)
|
||||
meta_loss = torch.stack(meta_losses).mean()
|
||||
meta_loss.backward()
|
||||
maml.step()
|
||||
|
||||
logger.log(head_str + " meta-loss: {:.4f}".format(meta_loss.item()))
|
||||
success, best_score = maml.save_best(-meta_loss.item())
|
||||
if success:
|
||||
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
|
||||
save_checkpoint(maml.state_dict(), logger.path("model"), logger)
|
||||
last_success_epoch = iepoch
|
||||
if iepoch - last_success_epoch >= args.early_stop_thresh:
|
||||
logger.log("Early stop at {:}".format(iepoch))
|
||||
break
|
||||
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
# meta-test
|
||||
maml.load_best()
|
||||
|
||||
def finetune(index):
|
||||
seq_times = test_env.get_seq_times(index, args.seq_length)
|
||||
_, (allxs, allys) = test_env.seq_call(seq_times)
|
||||
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
|
||||
if test_env.meta_info["task"] == "classification":
|
||||
allys = allys.view(-1)
|
||||
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
|
||||
future_container = maml.adapt(historical_x, historical_y)
|
||||
|
||||
historical_y_hat = maml.predict(historical_x, future_container)
|
||||
train_metric = metric_cls(True)
|
||||
# model.analyze_weights()
|
||||
with torch.no_grad():
|
||||
train_metric(historical_y_hat, historical_y)
|
||||
train_results = train_metric.get_info()
|
||||
return train_results, future_container
|
||||
|
||||
metric = metric_cls(True)
|
||||
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||
for idx, (future_time, (future_x, future_y)) in enumerate(test_env):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_timestamp_time.avg * (len(test_env) - idx), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, len(test_env))
|
||||
+ " "
|
||||
+ need_time
|
||||
)
|
||||
|
||||
# build optimizer
|
||||
train_results, future_container = finetune(idx)
|
||||
|
||||
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
|
||||
future_y_hat = maml.predict(future_x, future_container)
|
||||
future_loss = criterion(future_y_hat, future_y)
|
||||
metric(future_y_hat, future_y)
|
||||
log_str = (
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, len(test_env))
|
||||
+ " train-score: {:.5f}, eval-score: {:.5f}".format(
|
||||
train_results["score"], metric.get_info()["score"]
|
||||
)
|
||||
)
|
||||
logger.log(log_str)
|
||||
logger.log("")
|
||||
per_timestamp_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the maml.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/GeMOSA-synthetic/use-maml-ft",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_lr",
|
||||
type=float,
|
||||
default=0.02,
|
||||
help="The learning rate for the MAML optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--inner_lr",
|
||||
type=float,
|
||||
default=0.005,
|
||||
help="The learning rate for the inner optimization",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--inner_step", type=int, default=1, help="The inner loop steps for MAML."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seq_length", type=int, default=20, help="The sequence length."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=256,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
type=int,
|
||||
default=50,
|
||||
help="The maximum epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of data loading workers (default: 4)",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-s{:}-mlr{:}-d{:}-e{:}-env{:}".format(
|
||||
args.save_dir,
|
||||
args.inner_step,
|
||||
args.meta_lr,
|
||||
args.hidden_dim,
|
||||
args.epochs,
|
||||
args.env_version,
|
||||
)
|
||||
main(args)
|
319
AutoDL-Projects/exps/experimental/GeMOSA/baselines/maml-nof.py
Normal file
319
AutoDL-Projects/exps/experimental/GeMOSA/baselines/maml-nof.py
Normal file
@@ -0,0 +1,319 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/GeMOSA/baselines/maml-nof.py --env_version v1 --hidden_dim 16 --inner_step 5 --device cuda
|
||||
# python exps/GeMOSA/baselines/maml-nof.py --env_version v2 --hidden_dim 16 --inner_step 5 --device cuda
|
||||
# python exps/GeMOSA/baselines/maml-nof.py --env_version v3 --hidden_dim 32 --inner_step 5 --device cuda
|
||||
# python exps/GeMOSA/baselines/maml-nof.py --env_version v4 --hidden_dim 32 --inner_step 5 --device cuda
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "..").resolve()
|
||||
print(lib_dir)
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
)
|
||||
from xautodl.log_utils import time_string
|
||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, Top1AccMetric
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.models.xcore import get_model
|
||||
from xautodl.xlayers import super_core
|
||||
|
||||
|
||||
class MAML:
|
||||
"""A LFNA meta-model that uses the MLP as delta-net."""
|
||||
|
||||
def __init__(
|
||||
self, network, criterion, epochs, meta_lr, inner_lr=0.01, inner_step=1
|
||||
):
|
||||
self.criterion = criterion
|
||||
self.network = network
|
||||
self.meta_optimizer = torch.optim.Adam(
|
||||
self.network.parameters(), lr=meta_lr, amsgrad=True
|
||||
)
|
||||
self.inner_lr = inner_lr
|
||||
self.inner_step = inner_step
|
||||
self._best_info = dict(state_dict=None, iepoch=None, score=None)
|
||||
print("There are {:} weights.".format(self.network.get_w_container().numel()))
|
||||
|
||||
def adapt(self, x, y):
|
||||
# create a container for the future timestamp
|
||||
container = self.network.get_w_container()
|
||||
|
||||
for k in range(0, self.inner_step):
|
||||
y_hat = self.network.forward_with_container(x, container)
|
||||
loss = self.criterion(y_hat, y)
|
||||
grads = torch.autograd.grad(loss, container.parameters())
|
||||
container = container.additive([-self.inner_lr * grad for grad in grads])
|
||||
return container
|
||||
|
||||
def predict(self, x, container=None):
|
||||
if container is not None:
|
||||
y_hat = self.network.forward_with_container(x, container)
|
||||
else:
|
||||
y_hat = self.network(x)
|
||||
return y_hat
|
||||
|
||||
def step(self):
|
||||
torch.nn.utils.clip_grad_norm_(self.network.parameters(), 1.0)
|
||||
self.meta_optimizer.step()
|
||||
|
||||
def zero_grad(self):
|
||||
self.meta_optimizer.zero_grad()
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
self.criterion.load_state_dict(state_dict["criterion"])
|
||||
self.network.load_state_dict(state_dict["network"])
|
||||
self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"])
|
||||
|
||||
def state_dict(self):
|
||||
state_dict = dict()
|
||||
state_dict["criterion"] = self.criterion.state_dict()
|
||||
state_dict["network"] = self.network.state_dict()
|
||||
state_dict["meta_optimizer"] = self.meta_optimizer.state_dict()
|
||||
return state_dict
|
||||
|
||||
def save_best(self, score):
|
||||
success, best_score = self.network.save_best(score)
|
||||
return success, best_score
|
||||
|
||||
def load_best(self):
|
||||
self.network.load_best()
|
||||
|
||||
|
||||
def main(args):
|
||||
prepare_seed(args.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
train_env = get_synthetic_env(mode="train", version=args.env_version)
|
||||
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
|
||||
trainval_env = get_synthetic_env(mode="trainval", version=args.env_version)
|
||||
test_env = get_synthetic_env(mode="test", version=args.env_version)
|
||||
all_env = get_synthetic_env(mode=None, version=args.env_version)
|
||||
logger.log("The training enviornment: {:}".format(train_env))
|
||||
logger.log("The validation enviornment: {:}".format(valid_env))
|
||||
logger.log("The trainval enviornment: {:}".format(trainval_env))
|
||||
logger.log("The total enviornment: {:}".format(all_env))
|
||||
logger.log("The test enviornment: {:}".format(test_env))
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="norm_mlp"),
|
||||
input_dim=all_env.meta_info["input_dim"],
|
||||
output_dim=all_env.meta_info["output_dim"],
|
||||
hidden_dims=[args.hidden_dim] * 2,
|
||||
act_cls="relu",
|
||||
norm_cls="layer_norm_1d",
|
||||
)
|
||||
|
||||
model = get_model(**model_kwargs)
|
||||
model = model.to(args.device)
|
||||
if all_env.meta_info["task"] == "regression":
|
||||
criterion = torch.nn.MSELoss()
|
||||
metric_cls = MSEMetric
|
||||
elif all_env.meta_info["task"] == "classification":
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
metric_cls = Top1AccMetric
|
||||
else:
|
||||
raise ValueError(
|
||||
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
|
||||
)
|
||||
|
||||
maml = MAML(
|
||||
model, criterion, args.epochs, args.meta_lr, args.inner_lr, args.inner_step
|
||||
)
|
||||
|
||||
# meta-training
|
||||
last_success_epoch = 0
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
for iepoch in range(args.epochs):
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
head_str = (
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
|
||||
maml.zero_grad()
|
||||
meta_losses = []
|
||||
for ibatch in range(args.meta_batch):
|
||||
future_idx = random.randint(0, len(trainval_env) - 1)
|
||||
future_t, (future_x, future_y) = trainval_env[future_idx]
|
||||
# -->>
|
||||
seq_times = trainval_env.get_seq_times(future_idx, args.seq_length)
|
||||
_, (allxs, allys) = trainval_env.seq_call(seq_times)
|
||||
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
|
||||
if trainval_env.meta_info["task"] == "classification":
|
||||
allys = allys.view(-1)
|
||||
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
|
||||
future_container = maml.adapt(historical_x, historical_y)
|
||||
|
||||
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
|
||||
future_y_hat = maml.predict(future_x, future_container)
|
||||
future_loss = maml.criterion(future_y_hat, future_y)
|
||||
meta_losses.append(future_loss)
|
||||
meta_loss = torch.stack(meta_losses).mean()
|
||||
meta_loss.backward()
|
||||
maml.step()
|
||||
|
||||
logger.log(head_str + " meta-loss: {:.4f}".format(meta_loss.item()))
|
||||
success, best_score = maml.save_best(-meta_loss.item())
|
||||
if success:
|
||||
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
|
||||
save_checkpoint(maml.state_dict(), logger.path("model"), logger)
|
||||
last_success_epoch = iepoch
|
||||
if iepoch - last_success_epoch >= args.early_stop_thresh:
|
||||
logger.log("Early stop at {:}".format(iepoch))
|
||||
break
|
||||
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
# meta-test
|
||||
maml.load_best()
|
||||
|
||||
def finetune(index):
|
||||
seq_times = test_env.get_seq_times(index, args.seq_length)
|
||||
_, (allxs, allys) = test_env.seq_call(seq_times)
|
||||
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
|
||||
if test_env.meta_info["task"] == "classification":
|
||||
allys = allys.view(-1)
|
||||
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
|
||||
future_container = maml.adapt(historical_x, historical_y)
|
||||
|
||||
historical_y_hat = maml.predict(historical_x, future_container)
|
||||
train_metric = metric_cls(True)
|
||||
# model.analyze_weights()
|
||||
with torch.no_grad():
|
||||
train_metric(historical_y_hat, historical_y)
|
||||
train_results = train_metric.get_info()
|
||||
return train_results, future_container
|
||||
|
||||
train_results, future_container = finetune(0)
|
||||
|
||||
metric = metric_cls(True)
|
||||
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||
for idx, (future_time, (future_x, future_y)) in enumerate(test_env):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_timestamp_time.avg * (len(test_env) - idx), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, len(test_env))
|
||||
+ " "
|
||||
+ need_time
|
||||
)
|
||||
|
||||
# build optimizer
|
||||
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
|
||||
future_y_hat = maml.predict(future_x, future_container)
|
||||
future_loss = criterion(future_y_hat, future_y)
|
||||
metric(future_y_hat, future_y)
|
||||
log_str = (
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, len(test_env))
|
||||
+ " train-score: {:.5f}, eval-score: {:.5f}".format(
|
||||
train_results["score"], metric.get_info()["score"]
|
||||
)
|
||||
)
|
||||
logger.log(log_str)
|
||||
logger.log("")
|
||||
per_timestamp_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the maml.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/GeMOSA-synthetic/use-maml-nft",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_lr",
|
||||
type=float,
|
||||
default=0.02,
|
||||
help="The learning rate for the MAML optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--inner_lr",
|
||||
type=float,
|
||||
default=0.005,
|
||||
help="The learning rate for the inner optimization",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--inner_step", type=int, default=1, help="The inner loop steps for MAML."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seq_length", type=int, default=20, help="The sequence length."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=256,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
type=int,
|
||||
default=50,
|
||||
help="The maximum epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of data loading workers (default: 4)",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-s{:}-mlr{:}-d{:}-e{:}-env{:}".format(
|
||||
args.save_dir,
|
||||
args.inner_step,
|
||||
args.meta_lr,
|
||||
args.hidden_dim,
|
||||
args.epochs,
|
||||
args.env_version,
|
||||
)
|
||||
main(args)
|
228
AutoDL-Projects/exps/experimental/GeMOSA/baselines/slbm-ft.py
Normal file
228
AutoDL-Projects/exps/experimental/GeMOSA/baselines/slbm-ft.py
Normal file
@@ -0,0 +1,228 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/GeMOSA/baselines/slbm-ft.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda
|
||||
# python exps/GeMOSA/baselines/slbm-ft.py --env_version v2 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda
|
||||
# python exps/GeMOSA/baselines/slbm-ft.py --env_version v3 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda
|
||||
# python exps/GeMOSA/baselines/slbm-ft.py --env_version v4 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "..").resolve()
|
||||
print("LIB-DIR: {:}".format(lib_dir))
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
)
|
||||
from xautodl.log_utils import time_string
|
||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from xautodl.procedures.metric_utils import (
|
||||
SaveMetric,
|
||||
MSEMetric,
|
||||
Top1AccMetric,
|
||||
ComposeMetric,
|
||||
)
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.models.xcore import get_model
|
||||
from xautodl.utils import show_mean_var
|
||||
|
||||
|
||||
def subsample(historical_x, historical_y, maxn=10000):
|
||||
total = historical_x.size(0)
|
||||
if total <= maxn:
|
||||
return historical_x, historical_y
|
||||
else:
|
||||
indexes = torch.randint(low=0, high=total, size=[maxn])
|
||||
return historical_x[indexes], historical_y[indexes]
|
||||
|
||||
|
||||
def main(args):
|
||||
prepare_seed(args.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
env = get_synthetic_env(mode="test", version=args.env_version)
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="norm_mlp"),
|
||||
input_dim=env.meta_info["input_dim"],
|
||||
output_dim=env.meta_info["output_dim"],
|
||||
hidden_dims=[args.hidden_dim] * 2,
|
||||
act_cls="relu",
|
||||
norm_cls="layer_norm_1d",
|
||||
)
|
||||
logger.log("The total enviornment: {:}".format(env))
|
||||
w_containers = dict()
|
||||
|
||||
if env.meta_info["task"] == "regression":
|
||||
criterion = torch.nn.MSELoss()
|
||||
metric_cls = MSEMetric
|
||||
elif env.meta_info["task"] == "classification":
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
metric_cls = Top1AccMetric
|
||||
else:
|
||||
raise ValueError(
|
||||
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
|
||||
)
|
||||
|
||||
def finetune(index):
|
||||
seq_times = env.get_seq_times(index, args.seq_length)
|
||||
_, (allxs, allys) = env.seq_call(seq_times)
|
||||
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
|
||||
if env.meta_info["task"] == "classification":
|
||||
allys = allys.view(-1)
|
||||
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
|
||||
model = get_model(**model_kwargs)
|
||||
model = model.to(args.device)
|
||||
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.25),
|
||||
int(args.epochs * 0.5),
|
||||
int(args.epochs * 0.75),
|
||||
],
|
||||
gamma=0.3,
|
||||
)
|
||||
|
||||
train_metric = metric_cls(True)
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(args.epochs):
|
||||
preds = model(historical_x)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, historical_y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
model.load_state_dict(best_param)
|
||||
# model.analyze_weights()
|
||||
with torch.no_grad():
|
||||
train_metric(preds, historical_y)
|
||||
train_results = train_metric.get_info()
|
||||
return train_results, model
|
||||
|
||||
metric = metric_cls(True)
|
||||
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||
for idx, (future_time, (future_x, future_y)) in enumerate(env):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_timestamp_time.avg * (len(env) - idx), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, len(env))
|
||||
+ " "
|
||||
+ need_time
|
||||
)
|
||||
# train the same data
|
||||
train_results, model = finetune(idx)
|
||||
|
||||
# build optimizer
|
||||
xmetric = ComposeMetric(metric_cls(True), SaveMetric())
|
||||
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
|
||||
future_y_hat = model(future_x)
|
||||
future_loss = criterion(future_y_hat, future_y)
|
||||
metric(future_y_hat, future_y)
|
||||
log_str = (
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, len(env))
|
||||
+ " train-score: {:.5f}, eval-score: {:.5f}".format(
|
||||
train_results["score"], metric.get_info()["score"]
|
||||
)
|
||||
)
|
||||
logger.log(log_str)
|
||||
logger.log("")
|
||||
per_timestamp_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
save_checkpoint(
|
||||
{"w_containers": w_containers},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
return metric.get_info()["score"]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the past.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/GeMOSA-synthetic/use-same-ft-timestamp",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seq_length", type=int, default=20, help="The sequence length."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="The batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=300,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of data loading workers (default: 4)",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
args.save_dir = "{:}-d{:}_e{:}_lr{:}-env{:}".format(
|
||||
args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version
|
||||
)
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
results = []
|
||||
for iseed in range(3):
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
result = main(args)
|
||||
results.append(result)
|
||||
show_mean_var(results)
|
||||
else:
|
||||
main(args)
|
227
AutoDL-Projects/exps/experimental/GeMOSA/baselines/slbm-nof.py
Normal file
227
AutoDL-Projects/exps/experimental/GeMOSA/baselines/slbm-nof.py
Normal file
@@ -0,0 +1,227 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/GeMOSA/baselines/slbm-nof.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda
|
||||
# python exps/GeMOSA/baselines/slbm-nof.py --env_version v2 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda
|
||||
# python exps/GeMOSA/baselines/slbm-nof.py --env_version v3 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda
|
||||
# python exps/GeMOSA/baselines/slbm-nof.py --env_version v4 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "..").resolve()
|
||||
print("LIB-DIR: {:}".format(lib_dir))
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
)
|
||||
from xautodl.log_utils import time_string
|
||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from xautodl.procedures.metric_utils import (
|
||||
SaveMetric,
|
||||
MSEMetric,
|
||||
Top1AccMetric,
|
||||
ComposeMetric,
|
||||
)
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.models.xcore import get_model
|
||||
from xautodl.utils import show_mean_var
|
||||
|
||||
|
||||
def subsample(historical_x, historical_y, maxn=10000):
|
||||
total = historical_x.size(0)
|
||||
if total <= maxn:
|
||||
return historical_x, historical_y
|
||||
else:
|
||||
indexes = torch.randint(low=0, high=total, size=[maxn])
|
||||
return historical_x[indexes], historical_y[indexes]
|
||||
|
||||
|
||||
def main(args):
|
||||
prepare_seed(args.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
env = get_synthetic_env(mode="test", version=args.env_version)
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="norm_mlp"),
|
||||
input_dim=env.meta_info["input_dim"],
|
||||
output_dim=env.meta_info["output_dim"],
|
||||
hidden_dims=[args.hidden_dim] * 2,
|
||||
act_cls="relu",
|
||||
norm_cls="layer_norm_1d",
|
||||
)
|
||||
logger.log("The total enviornment: {:}".format(env))
|
||||
w_containers = dict()
|
||||
|
||||
if env.meta_info["task"] == "regression":
|
||||
criterion = torch.nn.MSELoss()
|
||||
metric_cls = MSEMetric
|
||||
elif env.meta_info["task"] == "classification":
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
metric_cls = Top1AccMetric
|
||||
else:
|
||||
raise ValueError(
|
||||
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
|
||||
)
|
||||
|
||||
seq_times = env.get_seq_times(0, args.seq_length)
|
||||
_, (allxs, allys) = env.seq_call(seq_times)
|
||||
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
|
||||
if env.meta_info["task"] == "classification":
|
||||
allys = allys.view(-1)
|
||||
|
||||
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
|
||||
model = get_model(**model_kwargs)
|
||||
model = model.to(args.device)
|
||||
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.25),
|
||||
int(args.epochs * 0.5),
|
||||
int(args.epochs * 0.75),
|
||||
],
|
||||
gamma=0.3,
|
||||
)
|
||||
|
||||
train_metric = metric_cls(True)
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(args.epochs):
|
||||
preds = model(historical_x)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, historical_y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
model.load_state_dict(best_param)
|
||||
model.analyze_weights()
|
||||
with torch.no_grad():
|
||||
train_metric(preds, historical_y)
|
||||
train_results = train_metric.get_info()
|
||||
print(train_results)
|
||||
|
||||
metric = metric_cls(True)
|
||||
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||
for idx, (future_time, (future_x, future_y)) in enumerate(env):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_timestamp_time.avg * (len(env) - idx), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, len(env))
|
||||
+ " "
|
||||
+ need_time
|
||||
)
|
||||
# train the same data
|
||||
|
||||
# build optimizer
|
||||
xmetric = ComposeMetric(metric_cls(True), SaveMetric())
|
||||
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
|
||||
future_y_hat = model(future_x)
|
||||
future_loss = criterion(future_y_hat, future_y)
|
||||
metric(future_y_hat, future_y)
|
||||
log_str = (
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, len(env))
|
||||
+ " train-score: {:.5f}, eval-score: {:.5f}".format(
|
||||
train_results["score"], metric.get_info()["score"]
|
||||
)
|
||||
)
|
||||
logger.log(log_str)
|
||||
logger.log("")
|
||||
per_timestamp_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
save_checkpoint(
|
||||
{"w_containers": w_containers},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
return metric.get_info()["score"]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the past.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/GeMOSA-synthetic/use-same-nof-timestamp",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seq_length", type=int, default=20, help="The sequence length."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="The batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=300,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of data loading workers (default: 4)",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
args.save_dir = "{:}-d{:}_e{:}_lr{:}-env{:}".format(
|
||||
args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version
|
||||
)
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
results = []
|
||||
for iseed in range(3):
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
result = main(args)
|
||||
results.append(result)
|
||||
show_mean_var(results)
|
||||
else:
|
||||
main(args)
|
206
AutoDL-Projects/exps/experimental/GeMOSA/basic-his.py
Normal file
206
AutoDL-Projects/exps/experimental/GeMOSA/basic-his.py
Normal file
@@ -0,0 +1,206 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/basic-his.py --srange 1-999 --env_version v1 --hidden_dim 16
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
)
|
||||
from xautodl.log_utils import time_string
|
||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from xautodl.utils import split_str2indexes
|
||||
|
||||
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.models.xcore import get_model
|
||||
|
||||
|
||||
from lfna_utils import lfna_setup
|
||||
|
||||
|
||||
def subsample(historical_x, historical_y, maxn=10000):
|
||||
total = historical_x.size(0)
|
||||
if total <= maxn:
|
||||
return historical_x, historical_y
|
||||
else:
|
||||
indexes = torch.randint(low=0, high=total, size=[maxn])
|
||||
return historical_x[indexes], historical_y[indexes]
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
|
||||
# check indexes to be evaluated
|
||||
to_evaluate_indexes = split_str2indexes(args.srange, env_info["total"], None)
|
||||
logger.log(
|
||||
"Evaluate {:}, which has {:} timestamps in total.".format(
|
||||
args.srange, len(to_evaluate_indexes)
|
||||
)
|
||||
)
|
||||
|
||||
w_container_per_epoch = dict()
|
||||
|
||||
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||
for i, idx in enumerate(to_evaluate_indexes):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(
|
||||
per_timestamp_time.avg * (len(to_evaluate_indexes) - i), True
|
||||
)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}][{:04d}]".format(i, len(to_evaluate_indexes), idx)
|
||||
+ " "
|
||||
+ need_time
|
||||
)
|
||||
# train the same data
|
||||
assert idx != 0
|
||||
historical_x, historical_y = [], []
|
||||
for past_i in range(idx):
|
||||
historical_x.append(env_info["{:}-x".format(past_i)])
|
||||
historical_y.append(env_info["{:}-y".format(past_i)])
|
||||
historical_x, historical_y = torch.cat(historical_x), torch.cat(historical_y)
|
||||
historical_x, historical_y = subsample(historical_x, historical_y)
|
||||
# build model
|
||||
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
# build optimizer
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
criterion = torch.nn.MSELoss()
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.25),
|
||||
int(args.epochs * 0.5),
|
||||
int(args.epochs * 0.75),
|
||||
],
|
||||
gamma=0.3,
|
||||
)
|
||||
train_metric = MSEMetric()
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(args.epochs):
|
||||
preds = model(historical_x)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, historical_y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
model.load_state_dict(best_param)
|
||||
with torch.no_grad():
|
||||
train_metric(preds, historical_y)
|
||||
train_results = train_metric.get_info()
|
||||
|
||||
metric = ComposeMetric(MSEMetric(), SaveMetric())
|
||||
eval_dataset = torch.utils.data.TensorDataset(
|
||||
env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)]
|
||||
)
|
||||
eval_loader = torch.utils.data.DataLoader(
|
||||
eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0
|
||||
)
|
||||
results = basic_eval_fn(eval_loader, model, metric, logger)
|
||||
log_str = (
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, env_info["total"])
|
||||
+ " train-mse: {:.5f}, eval-mse: {:.5f}".format(
|
||||
train_results["mse"], results["mse"]
|
||||
)
|
||||
)
|
||||
logger.log(log_str)
|
||||
|
||||
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
|
||||
idx, env_info["total"]
|
||||
)
|
||||
w_container_per_epoch[idx] = model.get_w_container().no_grad_clone()
|
||||
save_checkpoint(
|
||||
{
|
||||
"model_state_dict": model.state_dict(),
|
||||
"model": model,
|
||||
"index": idx,
|
||||
"timestamp": env_info["{:}-timestamp".format(idx)],
|
||||
},
|
||||
save_path,
|
||||
logger,
|
||||
)
|
||||
logger.log("")
|
||||
per_timestamp_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
save_checkpoint(
|
||||
{"w_container_per_epoch": w_container_per_epoch},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use all the past data to train.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/use-all-past-data",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="The batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--srange", type=str, required=True, help="The range of models to be evaluated"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of data loading workers (default: 4)",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.env_version, args.hidden_dim
|
||||
)
|
||||
main(args)
|
207
AutoDL-Projects/exps/experimental/GeMOSA/basic-prev.py
Normal file
207
AutoDL-Projects/exps/experimental/GeMOSA/basic-prev.py
Normal file
@@ -0,0 +1,207 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/GeMOSA/basic-prev.py --env_version v1 --prev_time 5 --hidden_dim 16 --epochs 500 --init_lr 0.1
|
||||
# python exps/GeMOSA/basic-prev.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
)
|
||||
from xautodl.log_utils import time_string
|
||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from xautodl.utils import split_str2indexes
|
||||
|
||||
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.models.xcore import get_model
|
||||
|
||||
from lfna_utils import lfna_setup
|
||||
|
||||
|
||||
def subsample(historical_x, historical_y, maxn=10000):
|
||||
total = historical_x.size(0)
|
||||
if total <= maxn:
|
||||
return historical_x, historical_y
|
||||
else:
|
||||
indexes = torch.randint(low=0, high=total, size=[maxn])
|
||||
return historical_x[indexes], historical_y[indexes]
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, model_kwargs = lfna_setup(args)
|
||||
|
||||
w_containers = dict()
|
||||
|
||||
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||
for idx in range(args.prev_time, env_info["total"]):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, env_info["total"])
|
||||
+ " "
|
||||
+ need_time
|
||||
)
|
||||
# train the same data
|
||||
historical_x = env_info["{:}-x".format(idx - args.prev_time)]
|
||||
historical_y = env_info["{:}-y".format(idx - args.prev_time)]
|
||||
# build model
|
||||
model = get_model(**model_kwargs)
|
||||
print(model)
|
||||
# build optimizer
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
criterion = torch.nn.MSELoss()
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.25),
|
||||
int(args.epochs * 0.5),
|
||||
int(args.epochs * 0.75),
|
||||
],
|
||||
gamma=0.3,
|
||||
)
|
||||
train_metric = MSEMetric()
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(args.epochs):
|
||||
preds = model(historical_x)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, historical_y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
model.load_state_dict(best_param)
|
||||
model.analyze_weights()
|
||||
with torch.no_grad():
|
||||
train_metric(preds, historical_y)
|
||||
train_results = train_metric.get_info()
|
||||
|
||||
metric = ComposeMetric(MSEMetric(), SaveMetric())
|
||||
eval_dataset = torch.utils.data.TensorDataset(
|
||||
env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)]
|
||||
)
|
||||
eval_loader = torch.utils.data.DataLoader(
|
||||
eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0
|
||||
)
|
||||
results = basic_eval_fn(eval_loader, model, metric, logger)
|
||||
log_str = (
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, env_info["total"])
|
||||
+ " train-mse: {:.5f}, eval-mse: {:.5f}".format(
|
||||
train_results["mse"], results["mse"]
|
||||
)
|
||||
)
|
||||
logger.log(log_str)
|
||||
|
||||
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
|
||||
idx, env_info["total"]
|
||||
)
|
||||
w_containers[idx] = model.get_w_container().no_grad_clone()
|
||||
save_checkpoint(
|
||||
{
|
||||
"model_state_dict": model.state_dict(),
|
||||
"model": model,
|
||||
"index": idx,
|
||||
"timestamp": env_info["{:}-timestamp".format(idx)],
|
||||
},
|
||||
save_path,
|
||||
logger,
|
||||
)
|
||||
logger.log("")
|
||||
per_timestamp_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
save_checkpoint(
|
||||
{"w_containers": w_containers},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the last timestamp.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/use-prev-timestamp",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prev_time",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The gap between prev_time and current_timestamp",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="The batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=300,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of data loading workers (default: 4)",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-d{:}_e{:}_lr{:}-prev{:}-env{:}".format(
|
||||
args.save_dir,
|
||||
args.hidden_dim,
|
||||
args.epochs,
|
||||
args.init_lr,
|
||||
args.prev_time,
|
||||
args.env_version,
|
||||
)
|
||||
main(args)
|
228
AutoDL-Projects/exps/experimental/GeMOSA/basic-same.py
Normal file
228
AutoDL-Projects/exps/experimental/GeMOSA/basic-same.py
Normal file
@@ -0,0 +1,228 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/GeMOSA/basic-same.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda
|
||||
# python exps/GeMOSA/basic-same.py --env_version v2 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda
|
||||
# python exps/GeMOSA/basic-same.py --env_version v3 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda
|
||||
# python exps/GeMOSA/basic-same.py --env_version v4 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
||||
print("LIB-DIR: {:}".format(lib_dir))
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
)
|
||||
from xautodl.log_utils import time_string
|
||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from xautodl.utils import split_str2indexes
|
||||
|
||||
from xautodl.procedures.metric_utils import (
|
||||
SaveMetric,
|
||||
MSEMetric,
|
||||
Top1AccMetric,
|
||||
ComposeMetric,
|
||||
)
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.models.xcore import get_model
|
||||
|
||||
|
||||
def subsample(historical_x, historical_y, maxn=10000):
|
||||
total = historical_x.size(0)
|
||||
if total <= maxn:
|
||||
return historical_x, historical_y
|
||||
else:
|
||||
indexes = torch.randint(low=0, high=total, size=[maxn])
|
||||
return historical_x[indexes], historical_y[indexes]
|
||||
|
||||
|
||||
def main(args):
|
||||
prepare_seed(args.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
env = get_synthetic_env(mode=None, version=args.env_version)
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="norm_mlp"),
|
||||
input_dim=env.meta_info["input_dim"],
|
||||
output_dim=env.meta_info["output_dim"],
|
||||
hidden_dims=[args.hidden_dim] * 2,
|
||||
act_cls="relu",
|
||||
norm_cls="layer_norm_1d",
|
||||
)
|
||||
logger.log("The total enviornment: {:}".format(env))
|
||||
w_containers = dict()
|
||||
|
||||
if env.meta_info["task"] == "regression":
|
||||
criterion = torch.nn.MSELoss()
|
||||
metric_cls = MSEMetric
|
||||
elif env.meta_info["task"] == "classification":
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
metric_cls = Top1AccMetric
|
||||
else:
|
||||
raise ValueError(
|
||||
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
|
||||
)
|
||||
|
||||
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||
for idx, (future_time, (future_x, future_y)) in enumerate(env):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_timestamp_time.avg * (len(env) - idx), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, len(env))
|
||||
+ " "
|
||||
+ need_time
|
||||
)
|
||||
# train the same data
|
||||
historical_x = future_x.to(args.device)
|
||||
historical_y = future_y.to(args.device)
|
||||
# build model
|
||||
model = get_model(**model_kwargs)
|
||||
model = model.to(args.device)
|
||||
if idx == 0:
|
||||
print(model)
|
||||
# build optimizer
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.25),
|
||||
int(args.epochs * 0.5),
|
||||
int(args.epochs * 0.75),
|
||||
],
|
||||
gamma=0.3,
|
||||
)
|
||||
train_metric = metric_cls(True)
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(args.epochs):
|
||||
preds = model(historical_x)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, historical_y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
model.load_state_dict(best_param)
|
||||
model.analyze_weights()
|
||||
with torch.no_grad():
|
||||
train_metric(preds, historical_y)
|
||||
train_results = train_metric.get_info()
|
||||
|
||||
xmetric = ComposeMetric(metric_cls(True), SaveMetric())
|
||||
eval_dataset = torch.utils.data.TensorDataset(
|
||||
future_x.to(args.device), future_y.to(args.device)
|
||||
)
|
||||
eval_loader = torch.utils.data.DataLoader(
|
||||
eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0
|
||||
)
|
||||
results = basic_eval_fn(eval_loader, model, xmetric, logger)
|
||||
log_str = (
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, len(env))
|
||||
+ " train-score: {:.5f}, eval-score: {:.5f}".format(
|
||||
train_results["score"], results["score"]
|
||||
)
|
||||
)
|
||||
logger.log(log_str)
|
||||
|
||||
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(idx, len(env))
|
||||
w_containers[idx] = model.get_w_container().no_grad_clone()
|
||||
save_checkpoint(
|
||||
{
|
||||
"model_state_dict": model.state_dict(),
|
||||
"model": model,
|
||||
"index": idx,
|
||||
"timestamp": future_time.item(),
|
||||
},
|
||||
save_path,
|
||||
logger,
|
||||
)
|
||||
logger.log("")
|
||||
per_timestamp_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
save_checkpoint(
|
||||
{"w_containers": w_containers},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the past.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/GeMOSA-synthetic/use-same-timestamp",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="The batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=300,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of data loading workers (default: 4)",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-d{:}_e{:}_lr{:}-env{:}".format(
|
||||
args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version
|
||||
)
|
||||
main(args)
|
438
AutoDL-Projects/exps/experimental/GeMOSA/main.py
Normal file
438
AutoDL-Projects/exps/experimental/GeMOSA/main.py
Normal file
@@ -0,0 +1,438 @@
|
||||
##########################################################
|
||||
# Learning to Efficiently Generate Models One Step Ahead #
|
||||
##########################################################
|
||||
# <----> run on CPU
|
||||
# python exps/GeMOSA/main.py --env_version v1 --workers 0
|
||||
# <----> run on a GPU
|
||||
# python exps/GeMOSA/main.py --env_version v1 --lr 0.002 --hidden_dim 16 --meta_batch 256 --device cuda
|
||||
# python exps/GeMOSA/main.py --env_version v2 --lr 0.002 --hidden_dim 16 --meta_batch 256 --device cuda
|
||||
# python exps/GeMOSA/main.py --env_version v3 --lr 0.002 --hidden_dim 32 --time_dim 32 --meta_batch 256 --device cuda
|
||||
# python exps/GeMOSA/main.py --env_version v4 --lr 0.002 --hidden_dim 32 --time_dim 32 --meta_batch 256 --device cuda
|
||||
# <----> ablation commands
|
||||
# python exps/GeMOSA/main.py --env_version v1 --lr 0.002 --hidden_dim 16 --meta_batch 256 --ablation old --device cuda
|
||||
# python exps/GeMOSA/main.py --env_version v2 --lr 0.002 --hidden_dim 16 --meta_batch 256 --ablation old --device cuda
|
||||
# python exps/GeMOSA/main.py --env_version v3 --lr 0.002 --hidden_dim 32 --time_dim 32 --meta_batch 256 --ablation old --device cuda
|
||||
# python exps/GeMOSA/main.py --env_version v4 --lr 0.002 --hidden_dim 32 --time_dim 32 --meta_batch 256 --ablation old --device cuda
|
||||
##########################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from torch.nn import functional as F
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
||||
print("LIB-DIR: {:}".format(lib_dir))
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
)
|
||||
from xautodl.log_utils import time_string
|
||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from xautodl.utils import split_str2indexes
|
||||
|
||||
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.models.xcore import get_model
|
||||
from xautodl.procedures.metric_utils import MSEMetric, Top1AccMetric
|
||||
|
||||
from meta_model import MetaModelV1
|
||||
from meta_model_ablation import MetaModel_TraditionalAtt
|
||||
|
||||
|
||||
def online_evaluate(
|
||||
env,
|
||||
meta_model,
|
||||
base_model,
|
||||
criterion,
|
||||
metric,
|
||||
args,
|
||||
logger,
|
||||
save=False,
|
||||
easy_adapt=False,
|
||||
):
|
||||
logger.log("Online evaluate: {:}".format(env))
|
||||
metric.reset()
|
||||
loss_meter = AverageMeter()
|
||||
w_containers = dict()
|
||||
for idx, (future_time, (future_x, future_y)) in enumerate(env):
|
||||
with torch.no_grad():
|
||||
meta_model.eval()
|
||||
base_model.eval()
|
||||
future_time_embed = meta_model.gen_time_embed(
|
||||
future_time.to(args.device).view(-1)
|
||||
)
|
||||
[future_container] = meta_model.gen_model(future_time_embed)
|
||||
if save:
|
||||
w_containers[idx] = future_container.no_grad_clone()
|
||||
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
|
||||
future_y_hat = base_model.forward_with_container(future_x, future_container)
|
||||
future_loss = criterion(future_y_hat, future_y)
|
||||
loss_meter.update(future_loss.item())
|
||||
# accumulate the metric scores
|
||||
score = metric(future_y_hat, future_y)
|
||||
if easy_adapt:
|
||||
meta_model.easy_adapt(future_time.item(), future_time_embed)
|
||||
refine, post_refine_loss = False, -1
|
||||
else:
|
||||
refine, post_refine_loss = meta_model.adapt(
|
||||
base_model,
|
||||
criterion,
|
||||
future_time.item(),
|
||||
future_x,
|
||||
future_y,
|
||||
args.refine_lr,
|
||||
args.refine_epochs,
|
||||
{"param": future_time_embed, "loss": future_loss.item()},
|
||||
)
|
||||
logger.log(
|
||||
"[ONLINE] [{:03d}/{:03d}] loss={:.4f}, score={:.4f}".format(
|
||||
idx, len(env), future_loss.item(), score
|
||||
)
|
||||
+ ", post-loss={:.4f}".format(post_refine_loss if refine else -1)
|
||||
)
|
||||
meta_model.clear_fixed()
|
||||
meta_model.clear_learnt()
|
||||
return w_containers, loss_meter.avg, metric.get_info()["score"]
|
||||
|
||||
|
||||
def meta_train_procedure(base_model, meta_model, criterion, xenv, args, logger):
|
||||
base_model.train()
|
||||
meta_model.train()
|
||||
optimizer = torch.optim.Adam(
|
||||
meta_model.get_parameters(True, True, True),
|
||||
lr=args.lr,
|
||||
weight_decay=args.weight_decay,
|
||||
amsgrad=True,
|
||||
)
|
||||
logger.log("Pre-train the meta-model")
|
||||
logger.log("Using the optimizer: {:}".format(optimizer))
|
||||
|
||||
meta_model.set_best_dir(logger.path(None) / "ckps-pretrain-v2")
|
||||
final_best_name = "final-pretrain-{:}.pth".format(args.rand_seed)
|
||||
if meta_model.has_best(final_best_name):
|
||||
meta_model.load_best(final_best_name)
|
||||
logger.log("Directly load the best model from {:}".format(final_best_name))
|
||||
return
|
||||
|
||||
total_indexes = list(range(meta_model.meta_length))
|
||||
meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed))
|
||||
last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
device = args.device
|
||||
for iepoch in range(args.epochs):
|
||||
left_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
optimizer.zero_grad()
|
||||
|
||||
generated_time_embeds = meta_model.gen_time_embed(meta_model.meta_timestamps)
|
||||
|
||||
batch_indexes = random.choices(total_indexes, k=args.meta_batch)
|
||||
|
||||
raw_time_steps = meta_model.meta_timestamps[batch_indexes]
|
||||
|
||||
regularization_loss = F.l1_loss(
|
||||
generated_time_embeds, meta_model.super_meta_embed, reduction="mean"
|
||||
)
|
||||
# future loss
|
||||
total_future_losses, total_present_losses = [], []
|
||||
future_containers = meta_model.gen_model(generated_time_embeds[batch_indexes])
|
||||
present_containers = meta_model.gen_model(
|
||||
meta_model.super_meta_embed[batch_indexes]
|
||||
)
|
||||
for ibatch, time_step in enumerate(raw_time_steps.cpu().tolist()):
|
||||
_, (inputs, targets) = xenv(time_step)
|
||||
inputs, targets = inputs.to(device), targets.to(device)
|
||||
|
||||
predictions = base_model.forward_with_container(
|
||||
inputs, future_containers[ibatch]
|
||||
)
|
||||
total_future_losses.append(criterion(predictions, targets))
|
||||
|
||||
predictions = base_model.forward_with_container(
|
||||
inputs, present_containers[ibatch]
|
||||
)
|
||||
total_present_losses.append(criterion(predictions, targets))
|
||||
|
||||
with torch.no_grad():
|
||||
meta_std = torch.stack(total_future_losses).std().item()
|
||||
loss_future = torch.stack(total_future_losses).mean()
|
||||
loss_present = torch.stack(total_present_losses).mean()
|
||||
total_loss = loss_future + loss_present + regularization_loss
|
||||
total_loss.backward()
|
||||
optimizer.step()
|
||||
# success
|
||||
success, best_score = meta_model.save_best(-total_loss.item())
|
||||
logger.log(
|
||||
"{:} [META {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f}".format(
|
||||
time_string(),
|
||||
iepoch,
|
||||
args.epochs,
|
||||
total_loss.item(),
|
||||
meta_std,
|
||||
loss_future.item(),
|
||||
loss_present.item(),
|
||||
regularization_loss.item(),
|
||||
)
|
||||
+ ", batch={:}".format(len(total_future_losses))
|
||||
+ ", success={:}, best={:.4f}".format(success, -best_score)
|
||||
+ ", LS={:}/{:}".format(iepoch - last_success_epoch, early_stop_thresh)
|
||||
+ ", {:}".format(left_time)
|
||||
)
|
||||
if success:
|
||||
last_success_epoch = iepoch
|
||||
if iepoch - last_success_epoch >= early_stop_thresh:
|
||||
logger.log("Early stop the pre-training at {:}".format(iepoch))
|
||||
break
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
meta_model.load_best()
|
||||
# save to the final model
|
||||
meta_model.set_best_name(final_best_name)
|
||||
success, _ = meta_model.save_best(best_score + 1e-6)
|
||||
assert success
|
||||
logger.log("Save the best model into {:}".format(final_best_name))
|
||||
|
||||
|
||||
def main(args):
|
||||
prepare_seed(args.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
train_env = get_synthetic_env(mode="train", version=args.env_version)
|
||||
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
|
||||
trainval_env = get_synthetic_env(mode="trainval", version=args.env_version)
|
||||
test_env = get_synthetic_env(mode="test", version=args.env_version)
|
||||
all_env = get_synthetic_env(mode=None, version=args.env_version)
|
||||
logger.log("The training enviornment: {:}".format(train_env))
|
||||
logger.log("The validation enviornment: {:}".format(valid_env))
|
||||
logger.log("The trainval enviornment: {:}".format(trainval_env))
|
||||
logger.log("The total enviornment: {:}".format(all_env))
|
||||
logger.log("The test enviornment: {:}".format(test_env))
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="norm_mlp"),
|
||||
input_dim=all_env.meta_info["input_dim"],
|
||||
output_dim=all_env.meta_info["output_dim"],
|
||||
hidden_dims=[args.hidden_dim] * 2,
|
||||
act_cls="relu",
|
||||
norm_cls="layer_norm_1d",
|
||||
)
|
||||
|
||||
base_model = get_model(**model_kwargs)
|
||||
base_model = base_model.to(args.device)
|
||||
if all_env.meta_info["task"] == "regression":
|
||||
criterion = torch.nn.MSELoss()
|
||||
metric = MSEMetric(True)
|
||||
elif all_env.meta_info["task"] == "classification":
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
metric = Top1AccMetric(True)
|
||||
else:
|
||||
raise ValueError(
|
||||
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
|
||||
)
|
||||
|
||||
shape_container = base_model.get_w_container().to_shape_container()
|
||||
|
||||
# pre-train the hypernetwork
|
||||
timestamps = trainval_env.get_timestamp(None)
|
||||
if args.ablation is None:
|
||||
MetaModel_cls = MetaModelV1
|
||||
elif args.ablation == "old":
|
||||
MetaModel_cls = MetaModel_TraditionalAtt
|
||||
else:
|
||||
raise ValueError("Unknown ablation : {:}".format(args.ablation))
|
||||
meta_model = MetaModel_cls(
|
||||
shape_container,
|
||||
args.layer_dim,
|
||||
args.time_dim,
|
||||
timestamps,
|
||||
seq_length=args.seq_length,
|
||||
interval=trainval_env.time_interval,
|
||||
)
|
||||
meta_model = meta_model.to(args.device)
|
||||
|
||||
logger.log("The base-model has {:} weights.".format(base_model.numel()))
|
||||
logger.log("The meta-model has {:} weights.".format(meta_model.numel()))
|
||||
logger.log("The base-model is\n{:}".format(base_model))
|
||||
logger.log("The meta-model is\n{:}".format(meta_model))
|
||||
|
||||
meta_train_procedure(base_model, meta_model, criterion, trainval_env, args, logger)
|
||||
|
||||
# try to evaluate once
|
||||
# online_evaluate(train_env, meta_model, base_model, criterion, args, logger)
|
||||
# online_evaluate(valid_env, meta_model, base_model, criterion, args, logger)
|
||||
"""
|
||||
w_containers, loss_meter = online_evaluate(
|
||||
all_env, meta_model, base_model, criterion, args, logger, True
|
||||
)
|
||||
logger.log("In this enviornment, the total loss-meter is {:}".format(loss_meter))
|
||||
"""
|
||||
w_containers_care_adapt, loss_adapt_v1, metric_adapt_v1 = online_evaluate(
|
||||
test_env, meta_model, base_model, criterion, metric, args, logger, True, False
|
||||
)
|
||||
w_containers_easy_adapt, loss_adapt_v2, metric_adapt_v2 = online_evaluate(
|
||||
test_env, meta_model, base_model, criterion, metric, args, logger, True, True
|
||||
)
|
||||
logger.log(
|
||||
"[Refine-Adapt] loss = {:.6f}, metric = {:.6f}".format(
|
||||
loss_adapt_v1, metric_adapt_v1
|
||||
)
|
||||
)
|
||||
logger.log(
|
||||
"[Easy-Adapt] loss = {:.6f}, metric = {:.6f}".format(
|
||||
loss_adapt_v2, metric_adapt_v2
|
||||
)
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
{
|
||||
"w_containers_care_adapt": w_containers_care_adapt,
|
||||
"w_containers_easy_adapt": w_containers_easy_adapt,
|
||||
"test_loss_adapt_v1": loss_adapt_v1,
|
||||
"test_loss_adapt_v2": loss_adapt_v2,
|
||||
"test_metric_adapt_v1": metric_adapt_v1,
|
||||
"test_metric_adapt_v2": metric_adapt_v2,
|
||||
},
|
||||
logger.path(None) / "final-ckp-{:}.pth".format(args.rand_seed),
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(".")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/GeMOSA-synthetic/GeMOSA",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--layer_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The layer chunk dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--time_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The timestamp dimension.",
|
||||
)
|
||||
#####
|
||||
parser.add_argument(
|
||||
"--lr",
|
||||
type=float,
|
||||
default=0.002,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--weight_decay",
|
||||
type=float,
|
||||
default=0.00001,
|
||||
help="The weight decay for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=64,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sampler_enlarge",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Enlarge the #iterations for an epoch",
|
||||
)
|
||||
parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.")
|
||||
parser.add_argument(
|
||||
"--refine_lr",
|
||||
type=float,
|
||||
default=0.001,
|
||||
help="The learning rate for the optimizer, during refine",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--refine_epochs", type=int, default=150, help="The final refine #epochs."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
type=int,
|
||||
default=20,
|
||||
help="The #epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pretrain_early_stop_thresh",
|
||||
type=int,
|
||||
default=300,
|
||||
help="The #epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seq_length", type=int, default=10, help="The sequence length."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers", type=int, default=4, help="The number of workers in parallel."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ablation", type=str, default=None, help="The ablation indicator."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
if args.ablation is None:
|
||||
args.save_dir = "{:}-bs{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-env{:}".format(
|
||||
args.save_dir,
|
||||
args.meta_batch,
|
||||
args.hidden_dim,
|
||||
args.layer_dim,
|
||||
args.time_dim,
|
||||
args.seq_length,
|
||||
args.lr,
|
||||
args.weight_decay,
|
||||
args.epochs,
|
||||
args.env_version,
|
||||
)
|
||||
else:
|
||||
args.save_dir = (
|
||||
"{:}-bs{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-ab{:}-env{:}".format(
|
||||
args.save_dir,
|
||||
args.meta_batch,
|
||||
args.hidden_dim,
|
||||
args.layer_dim,
|
||||
args.time_dim,
|
||||
args.seq_length,
|
||||
args.lr,
|
||||
args.weight_decay,
|
||||
args.epochs,
|
||||
args.ablation,
|
||||
args.env_version,
|
||||
)
|
||||
)
|
||||
main(args)
|
257
AutoDL-Projects/exps/experimental/GeMOSA/meta_model.py
Normal file
257
AutoDL-Projects/exps/experimental/GeMOSA/meta_model.py
Normal file
@@ -0,0 +1,257 @@
|
||||
import torch
|
||||
|
||||
import torch.nn.functional as F
|
||||
|
||||
from xautodl.xlayers import super_core
|
||||
from xautodl.xlayers import trunc_normal_
|
||||
from xautodl.xmodels.xcore import get_model
|
||||
|
||||
|
||||
class MetaModelV1(super_core.SuperModule):
|
||||
"""Learning to Generate Models One Step Ahead (Meta Model Design)."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
shape_container,
|
||||
layer_dim,
|
||||
time_dim,
|
||||
meta_timestamps,
|
||||
dropout: float = 0.1,
|
||||
seq_length: int = None,
|
||||
interval: float = None,
|
||||
thresh: float = None,
|
||||
):
|
||||
super(MetaModelV1, self).__init__()
|
||||
self._shape_container = shape_container
|
||||
self._num_layers = len(shape_container)
|
||||
self._numel_per_layer = []
|
||||
for ilayer in range(self._num_layers):
|
||||
self._numel_per_layer.append(shape_container[ilayer].numel())
|
||||
self._raw_meta_timestamps = meta_timestamps
|
||||
assert interval is not None
|
||||
self._interval = interval
|
||||
self._thresh = interval * seq_length if thresh is None else thresh
|
||||
|
||||
self.register_parameter(
|
||||
"_super_layer_embed",
|
||||
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_dim)),
|
||||
)
|
||||
self.register_parameter(
|
||||
"_super_meta_embed",
|
||||
torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_dim)),
|
||||
)
|
||||
self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps))
|
||||
self._time_embed_dim = time_dim
|
||||
self._append_meta_embed = dict(fixed=None, learnt=None)
|
||||
self._append_meta_timestamps = dict(fixed=None, learnt=None)
|
||||
|
||||
self._tscalar_embed = super_core.SuperDynamicPositionE(
|
||||
time_dim, scale=1 / interval
|
||||
)
|
||||
|
||||
# build transformer
|
||||
self._trans_att = super_core.SuperQKVAttentionV2(
|
||||
qk_att_dim=time_dim,
|
||||
in_v_dim=time_dim,
|
||||
hidden_dim=time_dim,
|
||||
num_heads=4,
|
||||
proj_dim=time_dim,
|
||||
qkv_bias=True,
|
||||
attn_drop=None,
|
||||
proj_drop=dropout,
|
||||
)
|
||||
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="dual_norm_mlp"),
|
||||
input_dim=layer_dim + time_dim,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dims=[(layer_dim + time_dim) * 2] * 3,
|
||||
act_cls="gelu",
|
||||
norm_cls="layer_norm_1d",
|
||||
dropout=dropout,
|
||||
)
|
||||
self._generator = get_model(**model_kwargs)
|
||||
|
||||
# initialization
|
||||
trunc_normal_(
|
||||
[self._super_layer_embed, self._super_meta_embed],
|
||||
std=0.02,
|
||||
)
|
||||
|
||||
def get_parameters(self, time_embed, attention, generator):
|
||||
parameters = []
|
||||
if time_embed:
|
||||
parameters.append(self._super_meta_embed)
|
||||
if attention:
|
||||
parameters.extend(list(self._trans_att.parameters()))
|
||||
if generator:
|
||||
parameters.append(self._super_layer_embed)
|
||||
parameters.extend(list(self._generator.parameters()))
|
||||
return parameters
|
||||
|
||||
@property
|
||||
def meta_timestamps(self):
|
||||
with torch.no_grad():
|
||||
meta_timestamps = [self._meta_timestamps]
|
||||
for key in ("fixed", "learnt"):
|
||||
if self._append_meta_timestamps[key] is not None:
|
||||
meta_timestamps.append(self._append_meta_timestamps[key])
|
||||
return torch.cat(meta_timestamps)
|
||||
|
||||
@property
|
||||
def super_meta_embed(self):
|
||||
meta_embed = [self._super_meta_embed]
|
||||
for key in ("fixed", "learnt"):
|
||||
if self._append_meta_embed[key] is not None:
|
||||
meta_embed.append(self._append_meta_embed[key])
|
||||
return torch.cat(meta_embed)
|
||||
|
||||
def create_meta_embed(self):
|
||||
param = torch.Tensor(1, self._time_embed_dim)
|
||||
trunc_normal_(param, std=0.02)
|
||||
param = param.to(self._super_meta_embed.device)
|
||||
param = torch.nn.Parameter(param, True)
|
||||
return param
|
||||
|
||||
def get_closest_meta_distance(self, timestamp):
|
||||
with torch.no_grad():
|
||||
distances = torch.abs(self.meta_timestamps - timestamp)
|
||||
return torch.min(distances).item()
|
||||
|
||||
def replace_append_learnt(self, timestamp, meta_embed):
|
||||
self._append_meta_timestamps["learnt"] = timestamp
|
||||
self._append_meta_embed["learnt"] = meta_embed
|
||||
|
||||
@property
|
||||
def meta_length(self):
|
||||
return self.meta_timestamps.numel()
|
||||
|
||||
def clear_fixed(self):
|
||||
self._append_meta_timestamps["fixed"] = None
|
||||
self._append_meta_embed["fixed"] = None
|
||||
|
||||
def clear_learnt(self):
|
||||
self.replace_append_learnt(None, None)
|
||||
|
||||
def append_fixed(self, timestamp, meta_embed):
|
||||
with torch.no_grad():
|
||||
device = self._super_meta_embed.device
|
||||
timestamp = timestamp.detach().clone().to(device)
|
||||
meta_embed = meta_embed.detach().clone().to(device)
|
||||
if self._append_meta_timestamps["fixed"] is None:
|
||||
self._append_meta_timestamps["fixed"] = timestamp
|
||||
else:
|
||||
self._append_meta_timestamps["fixed"] = torch.cat(
|
||||
(self._append_meta_timestamps["fixed"], timestamp), dim=0
|
||||
)
|
||||
if self._append_meta_embed["fixed"] is None:
|
||||
self._append_meta_embed["fixed"] = meta_embed
|
||||
else:
|
||||
self._append_meta_embed["fixed"] = torch.cat(
|
||||
(self._append_meta_embed["fixed"], meta_embed), dim=0
|
||||
)
|
||||
|
||||
def gen_time_embed(self, timestamps):
|
||||
# timestamps is a batch of timestamps
|
||||
[B] = timestamps.shape
|
||||
# batch, seq = timestamps.shape
|
||||
timestamps = timestamps.view(-1, 1)
|
||||
meta_timestamps, meta_embeds = self.meta_timestamps, self.super_meta_embed
|
||||
timestamp_v_embed = meta_embeds.unsqueeze(dim=0)
|
||||
timestamp_qk_att_embed = self._tscalar_embed(
|
||||
torch.unsqueeze(timestamps, dim=-1) - meta_timestamps
|
||||
)
|
||||
# create the mask
|
||||
mask = (
|
||||
torch.unsqueeze(timestamps, dim=-1) <= meta_timestamps.view(1, 1, -1)
|
||||
) | (
|
||||
torch.abs(
|
||||
torch.unsqueeze(timestamps, dim=-1) - meta_timestamps.view(1, 1, -1)
|
||||
)
|
||||
> self._thresh
|
||||
)
|
||||
timestamp_embeds = self._trans_att(
|
||||
timestamp_qk_att_embed,
|
||||
timestamp_v_embed,
|
||||
mask,
|
||||
)
|
||||
return timestamp_embeds[:, -1, :]
|
||||
|
||||
def gen_model(self, time_embeds):
|
||||
B, _ = time_embeds.shape
|
||||
# create joint embed
|
||||
num_layer, _ = self._super_layer_embed.shape
|
||||
# The shape of `joint_embed` is batch * num-layers * input-dim
|
||||
joint_embeds = torch.cat(
|
||||
(
|
||||
time_embeds.view(B, 1, -1).expand(-1, num_layer, -1),
|
||||
self._super_layer_embed.view(1, num_layer, -1).expand(B, -1, -1),
|
||||
),
|
||||
dim=-1,
|
||||
)
|
||||
batch_weights = self._generator(joint_embeds)
|
||||
batch_containers = []
|
||||
for weights in torch.split(batch_weights, 1):
|
||||
batch_containers.append(
|
||||
self._shape_container.translate(torch.split(weights.squeeze(0), 1))
|
||||
)
|
||||
return batch_containers
|
||||
|
||||
def forward_raw(self, timestamps, time_embeds, tembed_only=False):
|
||||
raise NotImplementedError
|
||||
|
||||
def forward_candidate(self, input):
|
||||
raise NotImplementedError
|
||||
|
||||
def easy_adapt(self, timestamp, time_embed):
|
||||
with torch.no_grad():
|
||||
timestamp = torch.Tensor([timestamp]).to(self._meta_timestamps.device)
|
||||
self.replace_append_learnt(None, None)
|
||||
self.append_fixed(timestamp, time_embed)
|
||||
|
||||
def adapt(self, base_model, criterion, timestamp, x, y, lr, epochs, init_info):
|
||||
distance = self.get_closest_meta_distance(timestamp)
|
||||
if distance + self._interval * 1e-2 <= self._interval:
|
||||
return False, None
|
||||
x, y = x.to(self._meta_timestamps.device), y.to(self._meta_timestamps.device)
|
||||
with torch.set_grad_enabled(True):
|
||||
new_param = self.create_meta_embed()
|
||||
|
||||
optimizer = torch.optim.Adam(
|
||||
[new_param], lr=lr, weight_decay=1e-5, amsgrad=True
|
||||
)
|
||||
timestamp = torch.Tensor([timestamp]).to(new_param.device)
|
||||
self.replace_append_learnt(timestamp, new_param)
|
||||
self.train()
|
||||
base_model.train()
|
||||
if init_info is not None:
|
||||
best_loss = init_info["loss"]
|
||||
new_param.data.copy_(init_info["param"].data)
|
||||
else:
|
||||
best_loss = 1e9
|
||||
with torch.no_grad():
|
||||
best_new_param = new_param.detach().clone()
|
||||
for iepoch in range(epochs):
|
||||
optimizer.zero_grad()
|
||||
time_embed = self.gen_time_embed(timestamp.view(1))
|
||||
match_loss = F.l1_loss(new_param, time_embed)
|
||||
|
||||
[container] = self.gen_model(new_param.view(1, -1))
|
||||
y_hat = base_model.forward_with_container(x, container)
|
||||
meta_loss = criterion(y_hat, y)
|
||||
loss = meta_loss + match_loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if meta_loss.item() < best_loss:
|
||||
with torch.no_grad():
|
||||
best_loss = meta_loss.item()
|
||||
best_new_param = new_param.detach().clone()
|
||||
self.easy_adapt(timestamp, best_new_param)
|
||||
return True, best_loss
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "(_super_layer_embed): {:}, (_super_meta_embed): {:}, (_meta_timestamps): {:}".format(
|
||||
list(self._super_layer_embed.shape),
|
||||
list(self._super_meta_embed.shape),
|
||||
list(self._meta_timestamps.shape),
|
||||
)
|
260
AutoDL-Projects/exps/experimental/GeMOSA/meta_model_ablation.py
Normal file
260
AutoDL-Projects/exps/experimental/GeMOSA/meta_model_ablation.py
Normal file
@@ -0,0 +1,260 @@
|
||||
#
|
||||
# This is used for the ablation studies:
|
||||
# The meta-model in this file uses the traditional attention in
|
||||
# transformer.
|
||||
#
|
||||
import torch
|
||||
|
||||
import torch.nn.functional as F
|
||||
|
||||
from xautodl.xlayers import super_core
|
||||
from xautodl.xlayers import trunc_normal_
|
||||
from xautodl.models.xcore import get_model
|
||||
|
||||
|
||||
class MetaModel_TraditionalAtt(super_core.SuperModule):
|
||||
"""Learning to Generate Models One Step Ahead (Meta Model Design)."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
shape_container,
|
||||
layer_dim,
|
||||
time_dim,
|
||||
meta_timestamps,
|
||||
dropout: float = 0.1,
|
||||
seq_length: int = None,
|
||||
interval: float = None,
|
||||
thresh: float = None,
|
||||
):
|
||||
super(MetaModel_TraditionalAtt, self).__init__()
|
||||
self._shape_container = shape_container
|
||||
self._num_layers = len(shape_container)
|
||||
self._numel_per_layer = []
|
||||
for ilayer in range(self._num_layers):
|
||||
self._numel_per_layer.append(shape_container[ilayer].numel())
|
||||
self._raw_meta_timestamps = meta_timestamps
|
||||
assert interval is not None
|
||||
self._interval = interval
|
||||
self._thresh = interval * seq_length if thresh is None else thresh
|
||||
|
||||
self.register_parameter(
|
||||
"_super_layer_embed",
|
||||
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_dim)),
|
||||
)
|
||||
self.register_parameter(
|
||||
"_super_meta_embed",
|
||||
torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_dim)),
|
||||
)
|
||||
self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps))
|
||||
self._time_embed_dim = time_dim
|
||||
self._append_meta_embed = dict(fixed=None, learnt=None)
|
||||
self._append_meta_timestamps = dict(fixed=None, learnt=None)
|
||||
|
||||
self._tscalar_embed = super_core.SuperDynamicPositionE(
|
||||
time_dim, scale=1 / interval
|
||||
)
|
||||
|
||||
# build transformer
|
||||
self._trans_att = super_core.SuperQKVAttention(
|
||||
in_q_dim=time_dim,
|
||||
in_k_dim=time_dim,
|
||||
in_v_dim=time_dim,
|
||||
num_heads=4,
|
||||
proj_dim=time_dim,
|
||||
qkv_bias=True,
|
||||
attn_drop=None,
|
||||
proj_drop=dropout,
|
||||
)
|
||||
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="dual_norm_mlp"),
|
||||
input_dim=layer_dim + time_dim,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dims=[(layer_dim + time_dim) * 2] * 3,
|
||||
act_cls="gelu",
|
||||
norm_cls="layer_norm_1d",
|
||||
dropout=dropout,
|
||||
)
|
||||
self._generator = get_model(**model_kwargs)
|
||||
|
||||
# initialization
|
||||
trunc_normal_(
|
||||
[self._super_layer_embed, self._super_meta_embed],
|
||||
std=0.02,
|
||||
)
|
||||
|
||||
def get_parameters(self, time_embed, attention, generator):
|
||||
parameters = []
|
||||
if time_embed:
|
||||
parameters.append(self._super_meta_embed)
|
||||
if attention:
|
||||
parameters.extend(list(self._trans_att.parameters()))
|
||||
if generator:
|
||||
parameters.append(self._super_layer_embed)
|
||||
parameters.extend(list(self._generator.parameters()))
|
||||
return parameters
|
||||
|
||||
@property
|
||||
def meta_timestamps(self):
|
||||
with torch.no_grad():
|
||||
meta_timestamps = [self._meta_timestamps]
|
||||
for key in ("fixed", "learnt"):
|
||||
if self._append_meta_timestamps[key] is not None:
|
||||
meta_timestamps.append(self._append_meta_timestamps[key])
|
||||
return torch.cat(meta_timestamps)
|
||||
|
||||
@property
|
||||
def super_meta_embed(self):
|
||||
meta_embed = [self._super_meta_embed]
|
||||
for key in ("fixed", "learnt"):
|
||||
if self._append_meta_embed[key] is not None:
|
||||
meta_embed.append(self._append_meta_embed[key])
|
||||
return torch.cat(meta_embed)
|
||||
|
||||
def create_meta_embed(self):
|
||||
param = torch.Tensor(1, self._time_embed_dim)
|
||||
trunc_normal_(param, std=0.02)
|
||||
param = param.to(self._super_meta_embed.device)
|
||||
param = torch.nn.Parameter(param, True)
|
||||
return param
|
||||
|
||||
def get_closest_meta_distance(self, timestamp):
|
||||
with torch.no_grad():
|
||||
distances = torch.abs(self.meta_timestamps - timestamp)
|
||||
return torch.min(distances).item()
|
||||
|
||||
def replace_append_learnt(self, timestamp, meta_embed):
|
||||
self._append_meta_timestamps["learnt"] = timestamp
|
||||
self._append_meta_embed["learnt"] = meta_embed
|
||||
|
||||
@property
|
||||
def meta_length(self):
|
||||
return self.meta_timestamps.numel()
|
||||
|
||||
def clear_fixed(self):
|
||||
self._append_meta_timestamps["fixed"] = None
|
||||
self._append_meta_embed["fixed"] = None
|
||||
|
||||
def clear_learnt(self):
|
||||
self.replace_append_learnt(None, None)
|
||||
|
||||
def append_fixed(self, timestamp, meta_embed):
|
||||
with torch.no_grad():
|
||||
device = self._super_meta_embed.device
|
||||
timestamp = timestamp.detach().clone().to(device)
|
||||
meta_embed = meta_embed.detach().clone().to(device)
|
||||
if self._append_meta_timestamps["fixed"] is None:
|
||||
self._append_meta_timestamps["fixed"] = timestamp
|
||||
else:
|
||||
self._append_meta_timestamps["fixed"] = torch.cat(
|
||||
(self._append_meta_timestamps["fixed"], timestamp), dim=0
|
||||
)
|
||||
if self._append_meta_embed["fixed"] is None:
|
||||
self._append_meta_embed["fixed"] = meta_embed
|
||||
else:
|
||||
self._append_meta_embed["fixed"] = torch.cat(
|
||||
(self._append_meta_embed["fixed"], meta_embed), dim=0
|
||||
)
|
||||
|
||||
def gen_time_embed(self, timestamps):
|
||||
# timestamps is a batch of timestamps
|
||||
[B] = timestamps.shape
|
||||
# batch, seq = timestamps.shape
|
||||
timestamps = timestamps.view(-1, 1)
|
||||
meta_timestamps, meta_embeds = self.meta_timestamps, self.super_meta_embed
|
||||
timestamp_v_embed = meta_embeds.unsqueeze(dim=0)
|
||||
timestamp_q_embed = self._tscalar_embed(timestamps)
|
||||
timestamp_k_embed = self._tscalar_embed(meta_timestamps.view(1, -1))
|
||||
|
||||
# create the mask
|
||||
mask = (
|
||||
torch.unsqueeze(timestamps, dim=-1) <= meta_timestamps.view(1, 1, -1)
|
||||
) | (
|
||||
torch.abs(
|
||||
torch.unsqueeze(timestamps, dim=-1) - meta_timestamps.view(1, 1, -1)
|
||||
)
|
||||
> self._thresh
|
||||
)
|
||||
timestamp_embeds = self._trans_att(
|
||||
timestamp_q_embed, timestamp_k_embed, timestamp_v_embed, mask
|
||||
)
|
||||
return timestamp_embeds[:, -1, :]
|
||||
|
||||
def gen_model(self, time_embeds):
|
||||
B, _ = time_embeds.shape
|
||||
# create joint embed
|
||||
num_layer, _ = self._super_layer_embed.shape
|
||||
# The shape of `joint_embed` is batch * num-layers * input-dim
|
||||
joint_embeds = torch.cat(
|
||||
(
|
||||
time_embeds.view(B, 1, -1).expand(-1, num_layer, -1),
|
||||
self._super_layer_embed.view(1, num_layer, -1).expand(B, -1, -1),
|
||||
),
|
||||
dim=-1,
|
||||
)
|
||||
batch_weights = self._generator(joint_embeds)
|
||||
batch_containers = []
|
||||
for weights in torch.split(batch_weights, 1):
|
||||
batch_containers.append(
|
||||
self._shape_container.translate(torch.split(weights.squeeze(0), 1))
|
||||
)
|
||||
return batch_containers
|
||||
|
||||
def forward_raw(self, timestamps, time_embeds, tembed_only=False):
|
||||
raise NotImplementedError
|
||||
|
||||
def forward_candidate(self, input):
|
||||
raise NotImplementedError
|
||||
|
||||
def easy_adapt(self, timestamp, time_embed):
|
||||
with torch.no_grad():
|
||||
timestamp = torch.Tensor([timestamp]).to(self._meta_timestamps.device)
|
||||
self.replace_append_learnt(None, None)
|
||||
self.append_fixed(timestamp, time_embed)
|
||||
|
||||
def adapt(self, base_model, criterion, timestamp, x, y, lr, epochs, init_info):
|
||||
distance = self.get_closest_meta_distance(timestamp)
|
||||
if distance + self._interval * 1e-2 <= self._interval:
|
||||
return False, None
|
||||
x, y = x.to(self._meta_timestamps.device), y.to(self._meta_timestamps.device)
|
||||
with torch.set_grad_enabled(True):
|
||||
new_param = self.create_meta_embed()
|
||||
|
||||
optimizer = torch.optim.Adam(
|
||||
[new_param], lr=lr, weight_decay=1e-5, amsgrad=True
|
||||
)
|
||||
timestamp = torch.Tensor([timestamp]).to(new_param.device)
|
||||
self.replace_append_learnt(timestamp, new_param)
|
||||
self.train()
|
||||
base_model.train()
|
||||
if init_info is not None:
|
||||
best_loss = init_info["loss"]
|
||||
new_param.data.copy_(init_info["param"].data)
|
||||
else:
|
||||
best_loss = 1e9
|
||||
with torch.no_grad():
|
||||
best_new_param = new_param.detach().clone()
|
||||
for iepoch in range(epochs):
|
||||
optimizer.zero_grad()
|
||||
time_embed = self.gen_time_embed(timestamp.view(1))
|
||||
match_loss = F.l1_loss(new_param, time_embed)
|
||||
|
||||
[container] = self.gen_model(new_param.view(1, -1))
|
||||
y_hat = base_model.forward_with_container(x, container)
|
||||
meta_loss = criterion(y_hat, y)
|
||||
loss = meta_loss + match_loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if meta_loss.item() < best_loss:
|
||||
with torch.no_grad():
|
||||
best_loss = meta_loss.item()
|
||||
best_new_param = new_param.detach().clone()
|
||||
self.easy_adapt(timestamp, best_new_param)
|
||||
return True, best_loss
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "(_super_layer_embed): {:}, (_super_meta_embed): {:}, (_meta_timestamps): {:}".format(
|
||||
list(self._super_layer_embed.shape),
|
||||
list(self._super_meta_embed.shape),
|
||||
list(self._meta_timestamps.shape),
|
||||
)
|
441
AutoDL-Projects/exps/experimental/GeMOSA/vis-synthetic.py
Normal file
441
AutoDL-Projects/exps/experimental/GeMOSA/vis-synthetic.py
Normal file
@@ -0,0 +1,441 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
||||
############################################################################
|
||||
# python exps/GeMOSA/vis-synthetic.py --env_version v1 #
|
||||
# python exps/GeMOSA/vis-synthetic.py --env_version v2 #
|
||||
# python exps/GeMOSA/vis-synthetic.py --env_version v3 #
|
||||
# python exps/GeMOSA/vis-synthetic.py --env_version v4 #
|
||||
############################################################################
|
||||
import os, sys, copy, random
|
||||
import torch
|
||||
import numpy as np
|
||||
import argparse
|
||||
from collections import OrderedDict, defaultdict
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
from pprint import pprint
|
||||
|
||||
import matplotlib
|
||||
from matplotlib import cm
|
||||
|
||||
matplotlib.use("agg")
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from xautodl.models.xcore import get_model
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.procedures.metric_utils import MSEMetric
|
||||
|
||||
|
||||
def plot_scatter(cur_ax, xs, ys, color, alpha, linewidths, label=None):
|
||||
cur_ax.scatter([-100], [-100], color=color, linewidths=linewidths[0], label=label)
|
||||
cur_ax.scatter(
|
||||
xs, ys, color=color, alpha=alpha, linewidths=linewidths[1], label=None
|
||||
)
|
||||
|
||||
|
||||
def draw_multi_fig(save_dir, timestamp, scatter_list, wh, fig_title=None):
|
||||
save_path = save_dir / "{:04d}".format(timestamp)
|
||||
# print('Plot the figure at timestamp-{:} into {:}'.format(timestamp, save_path))
|
||||
dpi, width, height = 40, wh[0], wh[1]
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize, font_gap = 80, 80, 5
|
||||
|
||||
fig = plt.figure(figsize=figsize)
|
||||
if fig_title is not None:
|
||||
fig.suptitle(
|
||||
fig_title, fontsize=LegendFontsize, fontweight="bold", x=0.5, y=0.92
|
||||
)
|
||||
|
||||
for idx, scatter_dict in enumerate(scatter_list):
|
||||
cur_ax = fig.add_subplot(len(scatter_list), 1, idx + 1)
|
||||
plot_scatter(
|
||||
cur_ax,
|
||||
scatter_dict["xaxis"],
|
||||
scatter_dict["yaxis"],
|
||||
scatter_dict["color"],
|
||||
scatter_dict["alpha"],
|
||||
scatter_dict["linewidths"],
|
||||
scatter_dict["label"],
|
||||
)
|
||||
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
||||
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
||||
cur_ax.set_xlim(scatter_dict["xlim"][0], scatter_dict["xlim"][1])
|
||||
cur_ax.set_ylim(scatter_dict["ylim"][0], scatter_dict["ylim"][1])
|
||||
for tick in cur_ax.xaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
tick.label.set_rotation(10)
|
||||
for tick in cur_ax.yaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
|
||||
fig.savefig(str(save_path) + ".png", dpi=dpi, bbox_inches="tight", format="png")
|
||||
plt.close("all")
|
||||
|
||||
|
||||
def find_min(cur, others):
|
||||
if cur is None:
|
||||
return float(others)
|
||||
else:
|
||||
return float(min(cur, others))
|
||||
|
||||
|
||||
def find_max(cur, others):
|
||||
if cur is None:
|
||||
return float(others.max())
|
||||
else:
|
||||
return float(max(cur, others))
|
||||
|
||||
|
||||
def compare_cl(save_dir):
|
||||
save_dir = Path(str(save_dir))
|
||||
save_dir.mkdir(parents=True, exist_ok=True)
|
||||
dynamic_env, cl_function = create_example_v1(
|
||||
# timestamp_config=dict(num=200, min_timestamp=-1, max_timestamp=1.0),
|
||||
timestamp_config=dict(num=200),
|
||||
num_per_task=1000,
|
||||
)
|
||||
|
||||
models = dict()
|
||||
|
||||
cl_function.set_timestamp(0)
|
||||
cl_xaxis_min = None
|
||||
cl_xaxis_max = None
|
||||
|
||||
all_data = OrderedDict()
|
||||
|
||||
for idx, (timestamp, dataset) in enumerate(tqdm(dynamic_env, ncols=50)):
|
||||
xaxis_all = dataset[0][:, 0].numpy()
|
||||
yaxis_all = dataset[1][:, 0].numpy()
|
||||
current_data = dict()
|
||||
current_data["lfna_xaxis_all"] = xaxis_all
|
||||
current_data["lfna_yaxis_all"] = yaxis_all
|
||||
|
||||
# compute cl-min
|
||||
cl_xaxis_min = find_min(cl_xaxis_min, xaxis_all.mean() - xaxis_all.std())
|
||||
cl_xaxis_max = find_max(cl_xaxis_max, xaxis_all.mean() + xaxis_all.std())
|
||||
all_data[timestamp] = current_data
|
||||
|
||||
global_cl_xaxis_all = np.arange(cl_xaxis_min, cl_xaxis_max, step=0.1)
|
||||
global_cl_yaxis_all = cl_function.noise_call(global_cl_xaxis_all)
|
||||
|
||||
for idx, (timestamp, xdata) in enumerate(tqdm(all_data.items(), ncols=50)):
|
||||
scatter_list = []
|
||||
scatter_list.append(
|
||||
{
|
||||
"xaxis": xdata["lfna_xaxis_all"],
|
||||
"yaxis": xdata["lfna_yaxis_all"],
|
||||
"color": "k",
|
||||
"linewidths": 15,
|
||||
"alpha": 0.99,
|
||||
"xlim": (-6, 6),
|
||||
"ylim": (-40, 40),
|
||||
"label": "LFNA",
|
||||
}
|
||||
)
|
||||
|
||||
cur_cl_xaxis_min = cl_xaxis_min
|
||||
cur_cl_xaxis_max = cl_xaxis_min + (cl_xaxis_max - cl_xaxis_min) * (
|
||||
idx + 1
|
||||
) / len(all_data)
|
||||
cl_xaxis_all = np.arange(cur_cl_xaxis_min, cur_cl_xaxis_max, step=0.01)
|
||||
cl_yaxis_all = cl_function.noise_call(cl_xaxis_all, std=0.2)
|
||||
|
||||
scatter_list.append(
|
||||
{
|
||||
"xaxis": cl_xaxis_all,
|
||||
"yaxis": cl_yaxis_all,
|
||||
"color": "k",
|
||||
"linewidths": 15,
|
||||
"xlim": (round(cl_xaxis_min, 1), round(cl_xaxis_max, 1)),
|
||||
"ylim": (-20, 6),
|
||||
"alpha": 0.99,
|
||||
"label": "Continual Learning",
|
||||
}
|
||||
)
|
||||
|
||||
draw_multi_fig(
|
||||
save_dir,
|
||||
idx,
|
||||
scatter_list,
|
||||
wh=(2200, 1800),
|
||||
fig_title="Timestamp={:03d}".format(idx),
|
||||
)
|
||||
print("Save all figures into {:}".format(save_dir))
|
||||
save_dir = save_dir.resolve()
|
||||
base_cmd = (
|
||||
"ffmpeg -y -i {xdir}/%04d.png -vf fps=1 -vf scale=2200:1800 -vb 5000k".format(
|
||||
xdir=save_dir
|
||||
)
|
||||
)
|
||||
video_cmd = "{:} -pix_fmt yuv420p {xdir}/compare-cl.mp4".format(
|
||||
base_cmd, xdir=save_dir
|
||||
)
|
||||
print(video_cmd + "\n")
|
||||
os.system(video_cmd)
|
||||
os.system(
|
||||
"{:} -pix_fmt yuv420p {xdir}/compare-cl.webm".format(base_cmd, xdir=save_dir)
|
||||
)
|
||||
|
||||
|
||||
def visualize_env(save_dir, version):
|
||||
save_dir = Path(str(save_dir))
|
||||
for substr in ("pdf", "png"):
|
||||
sub_save_dir = save_dir / "{:}-{:}".format(substr, version)
|
||||
sub_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dynamic_env = get_synthetic_env(version=version)
|
||||
print("env: {:}".format(dynamic_env))
|
||||
print("oracle_map: {:}".format(dynamic_env.oracle_map))
|
||||
allxs, allys = [], []
|
||||
for idx, (timestamp, (allx, ally)) in enumerate(tqdm(dynamic_env, ncols=50)):
|
||||
allxs.append(allx)
|
||||
allys.append(ally)
|
||||
if dynamic_env.meta_info["task"] == "regression":
|
||||
allxs, allys = torch.cat(allxs).view(-1), torch.cat(allys).view(-1)
|
||||
print(
|
||||
"x - min={:.3f}, max={:.3f}".format(allxs.min().item(), allxs.max().item())
|
||||
)
|
||||
print(
|
||||
"y - min={:.3f}, max={:.3f}".format(allys.min().item(), allys.max().item())
|
||||
)
|
||||
elif dynamic_env.meta_info["task"] == "classification":
|
||||
allxs = torch.cat(allxs)
|
||||
print(
|
||||
"x[0] - min={:.3f}, max={:.3f}".format(
|
||||
allxs[:, 0].min().item(), allxs[:, 0].max().item()
|
||||
)
|
||||
)
|
||||
print(
|
||||
"x[1] - min={:.3f}, max={:.3f}".format(
|
||||
allxs[:, 1].min().item(), allxs[:, 1].max().item()
|
||||
)
|
||||
)
|
||||
else:
|
||||
raise ValueError("Unknown task".format(dynamic_env.meta_info["task"]))
|
||||
|
||||
for idx, (timestamp, (allx, ally)) in enumerate(tqdm(dynamic_env, ncols=50)):
|
||||
dpi, width, height = 30, 1800, 1400
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize, font_gap = 80, 80, 5
|
||||
fig = plt.figure(figsize=figsize)
|
||||
|
||||
cur_ax = fig.add_subplot(1, 1, 1)
|
||||
if dynamic_env.meta_info["task"] == "regression":
|
||||
allx, ally = allx[:, 0].numpy(), ally[:, 0].numpy()
|
||||
plot_scatter(
|
||||
cur_ax, allx, ally, "k", 0.99, (15, 1.5), "timestamp={:05d}".format(idx)
|
||||
)
|
||||
cur_ax.set_xlim(round(allxs.min().item(), 1), round(allxs.max().item(), 1))
|
||||
cur_ax.set_ylim(round(allys.min().item(), 1), round(allys.max().item(), 1))
|
||||
elif dynamic_env.meta_info["task"] == "classification":
|
||||
positive, negative = ally == 1, ally == 0
|
||||
# plot_scatter(cur_ax, [1], [1], "k", 0.1, 1, "timestamp={:05d}".format(idx))
|
||||
plot_scatter(
|
||||
cur_ax,
|
||||
allx[positive, 0],
|
||||
allx[positive, 1],
|
||||
"r",
|
||||
0.99,
|
||||
(20, 10),
|
||||
"positive",
|
||||
)
|
||||
plot_scatter(
|
||||
cur_ax,
|
||||
allx[negative, 0],
|
||||
allx[negative, 1],
|
||||
"g",
|
||||
0.99,
|
||||
(20, 10),
|
||||
"negative",
|
||||
)
|
||||
cur_ax.set_xlim(
|
||||
round(allxs[:, 0].min().item(), 1), round(allxs[:, 0].max().item(), 1)
|
||||
)
|
||||
cur_ax.set_ylim(
|
||||
round(allxs[:, 1].min().item(), 1), round(allxs[:, 1].max().item(), 1)
|
||||
)
|
||||
else:
|
||||
raise ValueError("Unknown task".format(dynamic_env.meta_info["task"]))
|
||||
|
||||
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
||||
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
||||
for tick in cur_ax.xaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
tick.label.set_rotation(10)
|
||||
for tick in cur_ax.yaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||
pdf_save_path = (
|
||||
save_dir
|
||||
/ "pdf-{:}".format(version)
|
||||
/ "v{:}-{:05d}.pdf".format(version, idx)
|
||||
)
|
||||
fig.savefig(str(pdf_save_path), dpi=dpi, bbox_inches="tight", format="pdf")
|
||||
png_save_path = (
|
||||
save_dir
|
||||
/ "png-{:}".format(version)
|
||||
/ "v{:}-{:05d}.png".format(version, idx)
|
||||
)
|
||||
fig.savefig(str(png_save_path), dpi=dpi, bbox_inches="tight", format="png")
|
||||
plt.close("all")
|
||||
save_dir = save_dir.resolve()
|
||||
base_cmd = "ffmpeg -y -i {xdir}/v{version}-%05d.png -vf scale=1800:1400 -pix_fmt yuv420p -vb 5000k".format(
|
||||
xdir=save_dir / "png-{:}".format(version), version=version
|
||||
)
|
||||
print(base_cmd)
|
||||
os.system("{:} {xdir}/env-{ver}.mp4".format(base_cmd, xdir=save_dir, ver=version))
|
||||
os.system("{:} {xdir}/env-{ver}.webm".format(base_cmd, xdir=save_dir, ver=version))
|
||||
|
||||
|
||||
def compare_algs(save_dir, version, alg_dir="./outputs/GeMOSA-synthetic"):
|
||||
save_dir = Path(str(save_dir))
|
||||
for substr in ("pdf", "png"):
|
||||
sub_save_dir = save_dir / substr
|
||||
sub_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dpi, width, height = 30, 3200, 2000
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize, font_gap = 80, 80, 5
|
||||
|
||||
dynamic_env = get_synthetic_env(mode=None, version=version)
|
||||
allxs, allys = [], []
|
||||
for idx, (timestamp, (allx, ally)) in enumerate(tqdm(dynamic_env, ncols=50)):
|
||||
allxs.append(allx)
|
||||
allys.append(ally)
|
||||
allxs, allys = torch.cat(allxs).view(-1), torch.cat(allys).view(-1)
|
||||
|
||||
alg_name2dir = OrderedDict()
|
||||
# alg_name2dir["Supervised Learning (History Data)"] = "use-all-past-data"
|
||||
# alg_name2dir["MAML"] = "use-maml-s1"
|
||||
# alg_name2dir["LFNA (fix init)"] = "lfna-fix-init"
|
||||
if version == "v1":
|
||||
# alg_name2dir["Optimal"] = "use-same-timestamp"
|
||||
alg_name2dir[
|
||||
"GMOA"
|
||||
] = "lfna-battle-bs128-d16_16_16-s16-lr0.002-wd1e-05-e10000-envv1"
|
||||
else:
|
||||
raise ValueError("Invalid version: {:}".format(version))
|
||||
alg_name2all_containers = OrderedDict()
|
||||
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
||||
ckp_path = Path(alg_dir) / str(xdir) / "final-ckp.pth"
|
||||
xdata = torch.load(ckp_path, map_location="cpu")
|
||||
alg_name2all_containers[alg] = xdata["w_containers"]
|
||||
# load the basic model
|
||||
model = get_model(
|
||||
dict(model_type="norm_mlp"),
|
||||
input_dim=1,
|
||||
output_dim=1,
|
||||
hidden_dims=[16] * 2,
|
||||
act_cls="gelu",
|
||||
norm_cls="layer_norm_1d",
|
||||
)
|
||||
|
||||
alg2xs, alg2ys = defaultdict(list), defaultdict(list)
|
||||
colors = ["r", "g", "b", "m", "y"]
|
||||
|
||||
linewidths, skip = 10, 5
|
||||
for idx, (timestamp, (ori_allx, ori_ally)) in enumerate(
|
||||
tqdm(dynamic_env, ncols=50)
|
||||
):
|
||||
if idx <= skip:
|
||||
continue
|
||||
fig = plt.figure(figsize=figsize)
|
||||
cur_ax = fig.add_subplot(2, 1, 1)
|
||||
|
||||
# the data
|
||||
allx, ally = ori_allx[:, 0].numpy(), ori_ally[:, 0].numpy()
|
||||
plot_scatter(cur_ax, allx, ally, "k", 0.99, linewidths, "Raw Data")
|
||||
|
||||
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
||||
with torch.no_grad():
|
||||
predicts = model.forward_with_container(
|
||||
ori_allx, alg_name2all_containers[alg][idx]
|
||||
)
|
||||
predicts = predicts.cpu()
|
||||
# keep data
|
||||
metric = MSEMetric()
|
||||
metric(predicts, ori_ally)
|
||||
predicts = predicts.view(-1).numpy()
|
||||
alg2xs[alg].append(idx)
|
||||
alg2ys[alg].append(metric.get_info()["mse"])
|
||||
plot_scatter(cur_ax, allx, predicts, colors[idx_alg], 0.99, linewidths, alg)
|
||||
|
||||
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
||||
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
||||
for tick in cur_ax.xaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
tick.label.set_rotation(10)
|
||||
for tick in cur_ax.yaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
cur_ax.set_xlim(round(allxs.min().item(), 1), round(allxs.max().item(), 1))
|
||||
cur_ax.set_ylim(round(allys.min().item(), 1), round(allys.max().item(), 1))
|
||||
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||
|
||||
# the trajectory data
|
||||
cur_ax = fig.add_subplot(2, 1, 2)
|
||||
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
||||
# plot_scatter(cur_ax, alg2xs[alg], alg2ys[alg], olors[idx_alg], 0.99, linewidths, alg)
|
||||
cur_ax.plot(
|
||||
alg2xs[alg],
|
||||
alg2ys[alg],
|
||||
color=colors[idx_alg],
|
||||
linestyle="-",
|
||||
linewidth=5,
|
||||
label=alg,
|
||||
)
|
||||
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||
|
||||
cur_ax.set_xlabel("Timestamp", fontsize=LabelSize)
|
||||
cur_ax.set_ylabel("MSE", fontsize=LabelSize)
|
||||
for tick in cur_ax.xaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
tick.label.set_rotation(10)
|
||||
for tick in cur_ax.yaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
cur_ax.set_xlim(1, len(dynamic_env))
|
||||
cur_ax.set_ylim(0, 10)
|
||||
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||
|
||||
pdf_save_path = save_dir / "pdf" / "v{:}-{:05d}.pdf".format(version, idx - skip)
|
||||
fig.savefig(str(pdf_save_path), dpi=dpi, bbox_inches="tight", format="pdf")
|
||||
png_save_path = save_dir / "png" / "v{:}-{:05d}.png".format(version, idx - skip)
|
||||
fig.savefig(str(png_save_path), dpi=dpi, bbox_inches="tight", format="png")
|
||||
plt.close("all")
|
||||
save_dir = save_dir.resolve()
|
||||
base_cmd = "ffmpeg -y -i {xdir}/v{ver}-%05d.png -vf scale={w}:{h} -pix_fmt yuv420p -vb 5000k".format(
|
||||
xdir=save_dir / "png", w=width, h=height, ver=version
|
||||
)
|
||||
os.system(
|
||||
"{:} {xdir}/com-alg-{ver}.mp4".format(base_cmd, xdir=save_dir, ver=version)
|
||||
)
|
||||
os.system(
|
||||
"{:} {xdir}/com-alg-{ver}.webm".format(base_cmd, xdir=save_dir, ver=version)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser("Visualize synthetic data.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/vis-synthetic",
|
||||
help="The save directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
visualize_env(os.path.join(args.save_dir, "vis-env"), args.env_version)
|
||||
# visualize_env(os.path.join(args.save_dir, "vis-env"), "v2")
|
||||
# compare_algs(os.path.join(args.save_dir, "compare-alg"), args.env_version)
|
||||
# compare_cl(os.path.join(args.save_dir, "compare-cl"))
|
66
AutoDL-Projects/exps/experimental/example-nas-bench.py
Normal file
66
AutoDL-Projects/exps/experimental/example-nas-bench.py
Normal file
@@ -0,0 +1,66 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
||||
###########################################################################################################################################################
|
||||
# Before run these commands, the files must be properly put.
|
||||
#
|
||||
# python exps/experimental/example-nas-bench.py --api_path $HOME/.torch/NAS-Bench-201-v1_1-096897.pth --archive_path $HOME/.torch/NAS-Bench-201-v1_1-archive
|
||||
###########################################################################################################################################################
|
||||
import os, gc, sys, math, argparse, psutil
|
||||
import numpy as np
|
||||
import torch
|
||||
from pathlib import Path
|
||||
from collections import OrderedDict
|
||||
import matplotlib
|
||||
import seaborn as sns
|
||||
|
||||
matplotlib.use("agg")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from nas_201_api import NASBench201API
|
||||
from log_utils import time_string
|
||||
from models import get_cell_based_tiny_net
|
||||
from utils import weight_watcher
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
|
||||
parser.add_argument(
|
||||
"--api_path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The path to the NAS-Bench-201 benchmark file and weight dir.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--archive_path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The path to the NAS-Bench-201 weight dir.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
meta_file = Path(args.api_path)
|
||||
weight_dir = Path(args.archive_path)
|
||||
assert meta_file.exists(), "invalid path for api : {:}".format(meta_file)
|
||||
assert (
|
||||
weight_dir.exists() and weight_dir.is_dir()
|
||||
), "invalid path for weight dir : {:}".format(weight_dir)
|
||||
|
||||
api = NASBench201API(meta_file, verbose=True)
|
||||
|
||||
arch_index = 3 # query the 3-th architecture
|
||||
api.reload(weight_dir, arch_index) # reload the data of 3-th from archive dir
|
||||
|
||||
data = "cifar10" # query the info from CIFAR-10
|
||||
config = api.get_net_config(arch_index, data)
|
||||
net = get_cell_based_tiny_net(config)
|
||||
meta_info = api.query_meta_info_by_index(
|
||||
arch_index, hp="200"
|
||||
) # all info about this architecture
|
||||
params = meta_info.get_net_param(data, 888)
|
||||
|
||||
net.load_state_dict(params)
|
||||
_, summary = weight_watcher.analyze(net, alphas=False)
|
||||
print("The summary of {:}-th architecture:\n{:}".format(arch_index, summary))
|
57
AutoDL-Projects/exps/experimental/test-dks.py
Normal file
57
AutoDL-Projects/exps/experimental/test-dks.py
Normal file
@@ -0,0 +1,57 @@
|
||||
from dks.base.activation_getter import (
|
||||
get_activation_function as _get_numpy_activation_function,
|
||||
)
|
||||
from dks.base.activation_transform import _get_activations_params
|
||||
|
||||
|
||||
def subnet_max_func(x, r_fn):
|
||||
depth = 7
|
||||
res_x = r_fn(x)
|
||||
x = r_fn(x)
|
||||
for _ in range(depth):
|
||||
x = r_fn(r_fn(x)) + x
|
||||
return max(x, res_x)
|
||||
|
||||
|
||||
def subnet_max_func_v2(x, r_fn):
|
||||
depth = 2
|
||||
res_x = r_fn(x)
|
||||
|
||||
x = r_fn(x)
|
||||
for _ in range(depth):
|
||||
x = 0.8 * r_fn(r_fn(x)) + 0.2 * x
|
||||
|
||||
return max(x, res_x)
|
||||
|
||||
|
||||
def get_transformed_activations(
|
||||
activation_names,
|
||||
method="TAT",
|
||||
dks_params=None,
|
||||
tat_params=None,
|
||||
max_slope_func=None,
|
||||
max_curv_func=None,
|
||||
subnet_max_func=None,
|
||||
activation_getter=_get_numpy_activation_function,
|
||||
):
|
||||
params = _get_activations_params(
|
||||
activation_names,
|
||||
method=method,
|
||||
dks_params=dks_params,
|
||||
tat_params=tat_params,
|
||||
max_slope_func=max_slope_func,
|
||||
max_curv_func=max_curv_func,
|
||||
subnet_max_func=subnet_max_func,
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
params = get_transformed_activations(
|
||||
["swish"], method="TAT", subnet_max_func=subnet_max_func
|
||||
)
|
||||
print(params)
|
||||
|
||||
params = get_transformed_activations(
|
||||
["leaky_relu"], method="TAT", subnet_max_func=subnet_max_func_v2
|
||||
)
|
||||
print(params)
|
21
AutoDL-Projects/exps/experimental/test-dynamic.py
Normal file
21
AutoDL-Projects/exps/experimental/test-dynamic.py
Normal file
@@ -0,0 +1,21 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
||||
#####################################################
|
||||
# python test-dynamic.py
|
||||
#####################################################
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
||||
print("LIB-DIR: {:}".format(lib_dir))
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from xautodl.datasets.math_core import ConstantFunc
|
||||
from xautodl.datasets.math_core import GaussianDGenerator
|
||||
|
||||
mean_generator = ConstantFunc(0)
|
||||
cov_generator = ConstantFunc(1)
|
||||
|
||||
generator = GaussianDGenerator([mean_generator], [[cov_generator]], (-1, 1))
|
||||
generator(0, 10)
|
28
AutoDL-Projects/exps/experimental/test-flops.py
Normal file
28
AutoDL-Projects/exps/experimental/test-flops.py
Normal file
@@ -0,0 +1,28 @@
|
||||
import sys, time, random, argparse
|
||||
from copy import deepcopy
|
||||
import torchvision.models as models
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from utils import get_model_infos
|
||||
|
||||
# from models.ImageNet_MobileNetV2 import MobileNetV2
|
||||
from torchvision.models.mobilenet import MobileNetV2
|
||||
|
||||
|
||||
def main(width_mult):
|
||||
# model = MobileNetV2(1001, width_mult, 32, 1280, 'InvertedResidual', 0.2)
|
||||
model = MobileNetV2(width_mult=width_mult)
|
||||
print(model)
|
||||
flops, params = get_model_infos(model, (2, 3, 224, 224))
|
||||
print("FLOPs : {:}".format(flops))
|
||||
print("Params : {:}".format(params))
|
||||
print("-" * 50)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(1.0)
|
||||
main(1.4)
|
168
AutoDL-Projects/exps/experimental/test-nas-plot.py
Normal file
168
AutoDL-Projects/exps/experimental/test-nas-plot.py
Normal file
@@ -0,0 +1,168 @@
|
||||
# python ./exps/vis/test.py
|
||||
import os, sys, random
|
||||
from pathlib import Path
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
import numpy as np
|
||||
from collections import OrderedDict
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from nas_201_api import NASBench201API as API
|
||||
|
||||
|
||||
def test_nas_api():
|
||||
from nas_201_api import ArchResults
|
||||
|
||||
xdata = torch.load(
|
||||
"/home/dxy/FOR-RELEASE/NAS-Projects/output/NAS-BENCH-201-4/simplifies/architectures/000157-FULL.pth"
|
||||
)
|
||||
for key in ["full", "less"]:
|
||||
print("\n------------------------- {:} -------------------------".format(key))
|
||||
archRes = ArchResults.create_from_state_dict(xdata[key])
|
||||
print(archRes)
|
||||
print(archRes.arch_idx_str())
|
||||
print(archRes.get_dataset_names())
|
||||
print(archRes.get_comput_costs("cifar10-valid"))
|
||||
# get the metrics
|
||||
print(archRes.get_metrics("cifar10-valid", "x-valid", None, False))
|
||||
print(archRes.get_metrics("cifar10-valid", "x-valid", None, True))
|
||||
print(archRes.query("cifar10-valid", 777))
|
||||
|
||||
|
||||
OPS = ["skip-connect", "conv-1x1", "conv-3x3", "pool-3x3"]
|
||||
COLORS = ["chartreuse", "cyan", "navyblue", "chocolate1"]
|
||||
|
||||
|
||||
def plot(filename):
|
||||
from graphviz import Digraph
|
||||
|
||||
g = Digraph(
|
||||
format="png",
|
||||
edge_attr=dict(fontsize="20", fontname="times"),
|
||||
node_attr=dict(
|
||||
style="filled",
|
||||
shape="rect",
|
||||
align="center",
|
||||
fontsize="20",
|
||||
height="0.5",
|
||||
width="0.5",
|
||||
penwidth="2",
|
||||
fontname="times",
|
||||
),
|
||||
engine="dot",
|
||||
)
|
||||
g.body.extend(["rankdir=LR"])
|
||||
|
||||
steps = 5
|
||||
for i in range(0, steps):
|
||||
if i == 0:
|
||||
g.node(str(i), fillcolor="darkseagreen2")
|
||||
elif i + 1 == steps:
|
||||
g.node(str(i), fillcolor="palegoldenrod")
|
||||
else:
|
||||
g.node(str(i), fillcolor="lightblue")
|
||||
|
||||
for i in range(1, steps):
|
||||
for xin in range(i):
|
||||
op_i = random.randint(0, len(OPS) - 1)
|
||||
# g.edge(str(xin), str(i), label=OPS[op_i], fillcolor=COLORS[op_i])
|
||||
g.edge(
|
||||
str(xin),
|
||||
str(i),
|
||||
label=OPS[op_i],
|
||||
color=COLORS[op_i],
|
||||
fillcolor=COLORS[op_i],
|
||||
)
|
||||
# import pdb; pdb.set_trace()
|
||||
g.render(filename, cleanup=True, view=False)
|
||||
|
||||
|
||||
def test_auto_grad():
|
||||
class Net(torch.nn.Module):
|
||||
def __init__(self, iS):
|
||||
super(Net, self).__init__()
|
||||
self.layer = torch.nn.Linear(iS, 1)
|
||||
|
||||
def forward(self, inputs):
|
||||
outputs = self.layer(inputs)
|
||||
outputs = torch.exp(outputs)
|
||||
return outputs.mean()
|
||||
|
||||
net = Net(10)
|
||||
inputs = torch.rand(256, 10)
|
||||
loss = net(inputs)
|
||||
first_order_grads = torch.autograd.grad(
|
||||
loss, net.parameters(), retain_graph=True, create_graph=True
|
||||
)
|
||||
first_order_grads = torch.cat([x.view(-1) for x in first_order_grads])
|
||||
second_order_grads = []
|
||||
for grads in first_order_grads:
|
||||
s_grads = torch.autograd.grad(grads, net.parameters())
|
||||
second_order_grads.append(s_grads)
|
||||
|
||||
|
||||
def test_one_shot_model(ckpath, use_train):
|
||||
from models import get_cell_based_tiny_net, get_search_spaces
|
||||
from datasets import get_datasets, SearchDataset
|
||||
from config_utils import load_config, dict2config
|
||||
from utils.nas_utils import evaluate_one_shot
|
||||
|
||||
use_train = int(use_train) > 0
|
||||
# ckpath = 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/seed-11416-basic.pth'
|
||||
# ckpath = 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/seed-28640-basic.pth'
|
||||
print("ckpath : {:}".format(ckpath))
|
||||
ckp = torch.load(ckpath)
|
||||
xargs = ckp["args"]
|
||||
train_data, valid_data, xshape, class_num = get_datasets(
|
||||
xargs.dataset, xargs.data_path, -1
|
||||
)
|
||||
# config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, None)
|
||||
config = load_config(
|
||||
"./configs/nas-benchmark/algos/DARTS.config",
|
||||
{"class_num": class_num, "xshape": xshape},
|
||||
None,
|
||||
)
|
||||
if xargs.dataset == "cifar10":
|
||||
cifar_split = load_config("configs/nas-benchmark/cifar-split.txt", None, None)
|
||||
xvalid_data = deepcopy(train_data)
|
||||
xvalid_data.transform = valid_data.transform
|
||||
valid_loader = torch.utils.data.DataLoader(
|
||||
xvalid_data,
|
||||
batch_size=2048,
|
||||
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar_split.valid),
|
||||
num_workers=12,
|
||||
pin_memory=True,
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid dataset : {:}".format(xargs.dataseet))
|
||||
search_space = get_search_spaces("cell", xargs.search_space_name)
|
||||
model_config = dict2config(
|
||||
{
|
||||
"name": "SETN",
|
||||
"C": xargs.channel,
|
||||
"N": xargs.num_cells,
|
||||
"max_nodes": xargs.max_nodes,
|
||||
"num_classes": class_num,
|
||||
"space": search_space,
|
||||
"affine": False,
|
||||
"track_running_stats": True,
|
||||
},
|
||||
None,
|
||||
)
|
||||
search_model = get_cell_based_tiny_net(model_config)
|
||||
search_model.load_state_dict(ckp["search_model"])
|
||||
search_model = search_model.cuda()
|
||||
api = API("/home/dxy/.torch/NAS-Bench-201-v1_0-e61699.pth")
|
||||
archs, probs, accuracies = evaluate_one_shot(
|
||||
search_model, valid_loader, api, use_train
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# test_nas_api()
|
||||
# for i in range(200): plot('{:04d}'.format(i))
|
||||
# test_auto_grad()
|
||||
test_one_shot_model(sys.argv[1], sys.argv[2])
|
31
AutoDL-Projects/exps/experimental/test-resnest.py
Normal file
31
AutoDL-Projects/exps/experimental/test-resnest.py
Normal file
@@ -0,0 +1,31 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
||||
#####################################################
|
||||
# python exps/experimental/test-resnest.py
|
||||
#####################################################
|
||||
import sys, time, torch, random, argparse
|
||||
from PIL import ImageFile
|
||||
|
||||
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from utils import get_model_infos
|
||||
|
||||
torch.hub.list("zhanghang1989/ResNeSt", force_reload=True)
|
||||
|
||||
for model_name, xshape in [
|
||||
("resnest50", (1, 3, 224, 224)),
|
||||
("resnest101", (1, 3, 256, 256)),
|
||||
("resnest200", (1, 3, 320, 320)),
|
||||
("resnest269", (1, 3, 416, 416)),
|
||||
]:
|
||||
# net = torch.hub.load('zhanghang1989/ResNeSt', model_name, pretrained=True)
|
||||
net = torch.hub.load("zhanghang1989/ResNeSt", model_name, pretrained=False)
|
||||
print("Model : {:}, input shape : {:}".format(model_name, xshape))
|
||||
flops, param = get_model_infos(net, xshape)
|
||||
print("flops : {:.3f}M".format(flops))
|
||||
print("params : {:.3f}M".format(param))
|
198
AutoDL-Projects/exps/experimental/test-ww-bench.py
Normal file
198
AutoDL-Projects/exps/experimental/test-ww-bench.py
Normal file
@@ -0,0 +1,198 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
||||
###########################################################################################################################################################
|
||||
# Before run these commands, the files must be properly put.
|
||||
#
|
||||
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NATS-tss-v1_0-3ffb9 --dataset cifar10
|
||||
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NATS-sss-v1_0-50262 --dataset cifar100
|
||||
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NATS-sss-v1_0-50262 --dataset ImageNet16-120
|
||||
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space tss --base_path $HOME/.torch/NATS-tss-v1_0-3ffb9 --dataset cifar10
|
||||
###########################################################################################################################################################
|
||||
import os, gc, sys, math, argparse, psutil
|
||||
import numpy as np
|
||||
import torch
|
||||
from pathlib import Path
|
||||
from collections import OrderedDict
|
||||
import matplotlib
|
||||
import seaborn as sns
|
||||
|
||||
matplotlib.use("agg")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
||||
print("LIB-DIR: {:}".format(lib_dir))
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from log_utils import time_string
|
||||
from nats_bench import create
|
||||
from models import get_cell_based_tiny_net
|
||||
from utils import weight_watcher
|
||||
|
||||
|
||||
"""
|
||||
def get_cor(A, B):
|
||||
return float(np.corrcoef(A, B)[0,1])
|
||||
|
||||
|
||||
def tostr(accdict, norms):
|
||||
xstr = []
|
||||
for key, accs in accdict.items():
|
||||
cor = get_cor(accs, norms)
|
||||
xstr.append('{:}: {:.3f}'.format(key, cor))
|
||||
return ' '.join(xstr)
|
||||
"""
|
||||
|
||||
|
||||
def evaluate(api, weight_dir, data: str):
|
||||
print("\nEvaluate dataset={:}".format(data))
|
||||
process = psutil.Process(os.getpid())
|
||||
norms, accuracies = [], []
|
||||
ok, total = 0, 5000
|
||||
for idx in range(total):
|
||||
arch_index = api.random()
|
||||
api.reload(weight_dir, arch_index)
|
||||
# compute the weight watcher results
|
||||
config = api.get_net_config(arch_index, data)
|
||||
net = get_cell_based_tiny_net(config)
|
||||
meta_info = api.query_meta_info_by_index(
|
||||
arch_index, hp="200" if api.search_space_name == "topology" else "90"
|
||||
)
|
||||
params = meta_info.get_net_param(
|
||||
data, 888 if api.search_space_name == "topology" else 777
|
||||
)
|
||||
with torch.no_grad():
|
||||
net.load_state_dict(params)
|
||||
_, summary = weight_watcher.analyze(net, alphas=False)
|
||||
if "lognorm" not in summary:
|
||||
api.clear_params(arch_index, None)
|
||||
del net
|
||||
continue
|
||||
continue
|
||||
cur_norm = -summary["lognorm"]
|
||||
api.clear_params(arch_index, None)
|
||||
if math.isnan(cur_norm):
|
||||
del net, meta_info
|
||||
continue
|
||||
else:
|
||||
ok += 1
|
||||
norms.append(cur_norm)
|
||||
# query the accuracy
|
||||
info = meta_info.get_metrics(
|
||||
data,
|
||||
"ori-test",
|
||||
iepoch=None,
|
||||
is_random=888 if api.search_space_name == "topology" else 777,
|
||||
)
|
||||
accuracies.append(info["accuracy"])
|
||||
del net, meta_info
|
||||
# print the information
|
||||
if idx % 20 == 0:
|
||||
gc.collect()
|
||||
print(
|
||||
"{:} {:04d}_{:04d}/{:04d} ({:.2f} MB memory)".format(
|
||||
time_string(), ok, idx, total, process.memory_info().rss / 1e6
|
||||
)
|
||||
)
|
||||
return norms, accuracies
|
||||
|
||||
|
||||
def main(search_space, meta_file: str, weight_dir, save_dir, xdata):
|
||||
save_dir.mkdir(parents=True, exist_ok=True)
|
||||
api = create(meta_file, search_space, verbose=False)
|
||||
datasets = ["cifar10-valid", "cifar10", "cifar100", "ImageNet16-120"]
|
||||
print(time_string() + " " + "=" * 50)
|
||||
for data in datasets:
|
||||
hps = api.avaliable_hps
|
||||
for hp in hps:
|
||||
nums = api.statistics(data, hp=hp)
|
||||
total = sum([k * v for k, v in nums.items()])
|
||||
print(
|
||||
"Using {:3s} epochs, trained on {:20s} : {:} trials in total ({:}).".format(
|
||||
hp, data, total, nums
|
||||
)
|
||||
)
|
||||
print(time_string() + " " + "=" * 50)
|
||||
|
||||
norms, accuracies = evaluate(api, weight_dir, xdata)
|
||||
|
||||
indexes = list(range(len(norms)))
|
||||
norm_indexes = sorted(indexes, key=lambda i: norms[i])
|
||||
accy_indexes = sorted(indexes, key=lambda i: accuracies[i])
|
||||
labels = []
|
||||
for index in norm_indexes:
|
||||
labels.append(accy_indexes.index(index))
|
||||
|
||||
dpi, width, height = 200, 1400, 800
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 18, 12
|
||||
resnet_scale, resnet_alpha = 120, 0.5
|
||||
|
||||
fig = plt.figure(figsize=figsize)
|
||||
ax = fig.add_subplot(111)
|
||||
plt.xlim(min(indexes), max(indexes))
|
||||
plt.ylim(min(indexes), max(indexes))
|
||||
# plt.ylabel('y').set_rotation(30)
|
||||
plt.yticks(
|
||||
np.arange(min(indexes), max(indexes), max(indexes) // 3),
|
||||
fontsize=LegendFontsize,
|
||||
rotation="vertical",
|
||||
)
|
||||
plt.xticks(
|
||||
np.arange(min(indexes), max(indexes), max(indexes) // 5),
|
||||
fontsize=LegendFontsize,
|
||||
)
|
||||
ax.scatter(indexes, labels, marker="*", s=0.5, c="tab:red", alpha=0.8)
|
||||
ax.scatter(indexes, indexes, marker="o", s=0.5, c="tab:blue", alpha=0.8)
|
||||
ax.scatter([-1], [-1], marker="o", s=100, c="tab:blue", label="Test accuracy")
|
||||
ax.scatter([-1], [-1], marker="*", s=100, c="tab:red", label="Weight watcher")
|
||||
plt.grid(zorder=0)
|
||||
ax.set_axisbelow(True)
|
||||
plt.legend(loc=0, fontsize=LegendFontsize)
|
||||
ax.set_xlabel(
|
||||
"architecture ranking sorted by the test accuracy ", fontsize=LabelSize
|
||||
)
|
||||
ax.set_ylabel("architecture ranking computed by weight watcher", fontsize=LabelSize)
|
||||
save_path = (save_dir / "{:}-{:}-test-ww.pdf".format(search_space, xdata)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf")
|
||||
save_path = (save_dir / "{:}-{:}-test-ww.png".format(search_space, xdata)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
||||
print("{:} save into {:}".format(time_string(), save_path))
|
||||
|
||||
print("{:} finish this test.".format(time_string()))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./output/vis-nas-bench/",
|
||||
help="The base-name of folder to save checkpoints and log.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--search_space",
|
||||
type=str,
|
||||
default=None,
|
||||
choices=["tss", "sss"],
|
||||
help="The search space.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--base_path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The path to the NAS-Bench-201 benchmark file and weight dir.",
|
||||
)
|
||||
parser.add_argument("--dataset", type=str, default=None, help=".")
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path(args.save_dir)
|
||||
save_dir.mkdir(parents=True, exist_ok=True)
|
||||
meta_file = Path(args.base_path + ".pth")
|
||||
weight_dir = Path(args.base_path + "-full")
|
||||
assert meta_file.exists(), "invalid path for api : {:}".format(meta_file)
|
||||
assert (
|
||||
weight_dir.exists() and weight_dir.is_dir()
|
||||
), "invalid path for weight dir : {:}".format(weight_dir)
|
||||
|
||||
main(args.search_space, str(meta_file), weight_dir, save_dir, args.dataset)
|
30
AutoDL-Projects/exps/experimental/test-ww.py
Normal file
30
AutoDL-Projects/exps/experimental/test-ww.py
Normal file
@@ -0,0 +1,30 @@
|
||||
import sys, time, random, argparse
|
||||
from copy import deepcopy
|
||||
import torchvision.models as models
|
||||
from pathlib import Path
|
||||
|
||||
from xautodl.utils import weight_watcher
|
||||
|
||||
|
||||
def main():
|
||||
# model = models.vgg19_bn(pretrained=True)
|
||||
# _, summary = weight_watcher.analyze(model, alphas=False)
|
||||
# for key, value in summary.items():
|
||||
# print('{:10s} : {:}'.format(key, value))
|
||||
|
||||
_, summary = weight_watcher.analyze(models.vgg13(pretrained=True), alphas=False)
|
||||
print("vgg-13 : {:}".format(summary["lognorm"]))
|
||||
_, summary = weight_watcher.analyze(models.vgg13_bn(pretrained=True), alphas=False)
|
||||
print("vgg-13-BN : {:}".format(summary["lognorm"]))
|
||||
_, summary = weight_watcher.analyze(models.vgg16(pretrained=True), alphas=False)
|
||||
print("vgg-16 : {:}".format(summary["lognorm"]))
|
||||
_, summary = weight_watcher.analyze(models.vgg16_bn(pretrained=True), alphas=False)
|
||||
print("vgg-16-BN : {:}".format(summary["lognorm"]))
|
||||
_, summary = weight_watcher.analyze(models.vgg19(pretrained=True), alphas=False)
|
||||
print("vgg-19 : {:}".format(summary["lognorm"]))
|
||||
_, summary = weight_watcher.analyze(models.vgg19_bn(pretrained=True), alphas=False)
|
||||
print("vgg-19-BN : {:}".format(summary["lognorm"]))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
178
AutoDL-Projects/exps/experimental/vis-nats-bench-algos.py
Normal file
178
AutoDL-Projects/exps/experimental/vis-nats-bench-algos.py
Normal file
@@ -0,0 +1,178 @@
|
||||
###############################################################
|
||||
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
|
||||
###############################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
||||
###############################################################
|
||||
# Usage: python exps/experimental/vis-nats-bench-algos.py --search_space tss
|
||||
# Usage: python exps/experimental/vis-nats-bench-algos.py --search_space sss
|
||||
###############################################################
|
||||
import os, gc, sys, time, torch, argparse
|
||||
import numpy as np
|
||||
from typing import List, Text, Dict, Any
|
||||
from shutil import copyfile
|
||||
from collections import defaultdict, OrderedDict
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import matplotlib
|
||||
import seaborn as sns
|
||||
|
||||
matplotlib.use("agg")
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import dict2config, load_config
|
||||
from nats_bench import create
|
||||
from log_utils import time_string
|
||||
|
||||
|
||||
def fetch_data(root_dir="./output/search", search_space="tss", dataset=None):
|
||||
ss_dir = "{:}-{:}".format(root_dir, search_space)
|
||||
alg2name, alg2path = OrderedDict(), OrderedDict()
|
||||
alg2name["REA"] = "R-EA-SS3"
|
||||
alg2name["REINFORCE"] = "REINFORCE-0.01"
|
||||
alg2name["RANDOM"] = "RANDOM"
|
||||
alg2name["BOHB"] = "BOHB"
|
||||
for alg, name in alg2name.items():
|
||||
alg2path[alg] = os.path.join(ss_dir, dataset, name, "results.pth")
|
||||
assert os.path.isfile(alg2path[alg]), "invalid path : {:}".format(alg2path[alg])
|
||||
alg2data = OrderedDict()
|
||||
for alg, path in alg2path.items():
|
||||
data = torch.load(path)
|
||||
for index, info in data.items():
|
||||
info["time_w_arch"] = [
|
||||
(x, y) for x, y in zip(info["all_total_times"], info["all_archs"])
|
||||
]
|
||||
for j, arch in enumerate(info["all_archs"]):
|
||||
assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format(
|
||||
alg, search_space, dataset, index, j
|
||||
)
|
||||
alg2data[alg] = data
|
||||
return alg2data
|
||||
|
||||
|
||||
def query_performance(api, data, dataset, ticket):
|
||||
results, is_size_space = [], api.search_space_name == "size"
|
||||
for i, info in data.items():
|
||||
time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket))
|
||||
time_a, arch_a = time_w_arch[0]
|
||||
time_b, arch_b = time_w_arch[1]
|
||||
info_a = api.get_more_info(
|
||||
arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
|
||||
)
|
||||
info_b = api.get_more_info(
|
||||
arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
|
||||
)
|
||||
accuracy_a, accuracy_b = info_a["test-accuracy"], info_b["test-accuracy"]
|
||||
interplate = (time_b - ticket) / (time_b - time_a) * accuracy_a + (
|
||||
ticket - time_a
|
||||
) / (time_b - time_a) * accuracy_b
|
||||
results.append(interplate)
|
||||
return sum(results) / len(results)
|
||||
|
||||
|
||||
y_min_s = {
|
||||
("cifar10", "tss"): 90,
|
||||
("cifar10", "sss"): 92,
|
||||
("cifar100", "tss"): 65,
|
||||
("cifar100", "sss"): 65,
|
||||
("ImageNet16-120", "tss"): 36,
|
||||
("ImageNet16-120", "sss"): 40,
|
||||
}
|
||||
|
||||
y_max_s = {
|
||||
("cifar10", "tss"): 94.5,
|
||||
("cifar10", "sss"): 93.3,
|
||||
("cifar100", "tss"): 72,
|
||||
("cifar100", "sss"): 70,
|
||||
("ImageNet16-120", "tss"): 44,
|
||||
("ImageNet16-120", "sss"): 46,
|
||||
}
|
||||
|
||||
name2label = {
|
||||
"cifar10": "CIFAR-10",
|
||||
"cifar100": "CIFAR-100",
|
||||
"ImageNet16-120": "ImageNet-16-120",
|
||||
}
|
||||
|
||||
|
||||
def visualize_curve(api, vis_save_dir, search_space, max_time):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dpi, width, height = 250, 5200, 1400
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 16, 16
|
||||
|
||||
def sub_plot_fn(ax, dataset):
|
||||
alg2data = fetch_data(search_space=search_space, dataset=dataset)
|
||||
alg2accuracies = OrderedDict()
|
||||
total_tickets = 150
|
||||
time_tickets = [
|
||||
float(i) / total_tickets * max_time for i in range(total_tickets)
|
||||
]
|
||||
colors = ["b", "g", "c", "m", "y"]
|
||||
ax.set_xlim(0, 200)
|
||||
ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
|
||||
for idx, (alg, data) in enumerate(alg2data.items()):
|
||||
print("plot alg : {:}".format(alg))
|
||||
accuracies = []
|
||||
for ticket in time_tickets:
|
||||
accuracy = query_performance(api, data, dataset, ticket)
|
||||
accuracies.append(accuracy)
|
||||
alg2accuracies[alg] = accuracies
|
||||
ax.plot(
|
||||
[x / 100 for x in time_tickets],
|
||||
accuracies,
|
||||
c=colors[idx],
|
||||
label="{:}".format(alg),
|
||||
)
|
||||
ax.set_xlabel("Estimated wall-clock time (1e2 seconds)", fontsize=LabelSize)
|
||||
ax.set_ylabel(
|
||||
"Test accuracy on {:}".format(name2label[dataset]), fontsize=LabelSize
|
||||
)
|
||||
ax.set_title(
|
||||
"Searching results on {:}".format(name2label[dataset]),
|
||||
fontsize=LabelSize + 4,
|
||||
)
|
||||
ax.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
fig, axs = plt.subplots(1, 3, figsize=figsize)
|
||||
datasets = ["cifar10", "cifar100", "ImageNet16-120"]
|
||||
for dataset, ax in zip(datasets, axs):
|
||||
sub_plot_fn(ax, dataset)
|
||||
print("sub-plot {:} on {:} done.".format(dataset, search_space))
|
||||
save_path = (vis_save_dir / "{:}-curve.png".format(search_space)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
||||
print("{:} save into {:}".format(time_string(), save_path))
|
||||
plt.close("all")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="NAS-Bench-X",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="output/vis-nas-bench/nas-algos",
|
||||
help="Folder to save checkpoints and log.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--search_space",
|
||||
type=str,
|
||||
choices=["tss", "sss"],
|
||||
help="Choose the search space.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_time", type=float, default=20000, help="The maximum time budget."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path(args.save_dir)
|
||||
|
||||
api = create(None, args.search_space, verbose=False)
|
||||
visualize_curve(api, save_dir, args.search_space, args.max_time)
|
185
AutoDL-Projects/exps/experimental/vis-nats-bench-ws.py
Normal file
185
AutoDL-Projects/exps/experimental/vis-nats-bench-ws.py
Normal file
@@ -0,0 +1,185 @@
|
||||
###############################################################
|
||||
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
|
||||
###############################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
||||
###############################################################
|
||||
# Usage: python exps/experimental/vis-nats-bench-ws.py --search_space tss
|
||||
# Usage: python exps/experimental/vis-nats-bench-ws.py --search_space sss
|
||||
###############################################################
|
||||
import os, gc, sys, time, torch, argparse
|
||||
import numpy as np
|
||||
from typing import List, Text, Dict, Any
|
||||
from shutil import copyfile
|
||||
from collections import defaultdict, OrderedDict
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import matplotlib
|
||||
import seaborn as sns
|
||||
|
||||
matplotlib.use("agg")
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import dict2config, load_config
|
||||
from nats_bench import create
|
||||
from log_utils import time_string
|
||||
|
||||
|
||||
# def fetch_data(root_dir='./output/search', search_space='tss', dataset=None, suffix='-WARMNone'):
|
||||
def fetch_data(
|
||||
root_dir="./output/search", search_space="tss", dataset=None, suffix="-WARM0.3"
|
||||
):
|
||||
ss_dir = "{:}-{:}".format(root_dir, search_space)
|
||||
alg2name, alg2path = OrderedDict(), OrderedDict()
|
||||
seeds = [777, 888, 999]
|
||||
print("\n[fetch data] from {:} on {:}".format(search_space, dataset))
|
||||
if search_space == "tss":
|
||||
alg2name["GDAS"] = "gdas-affine0_BN0-None"
|
||||
alg2name["RSPS"] = "random-affine0_BN0-None"
|
||||
alg2name["DARTS (1st)"] = "darts-v1-affine0_BN0-None"
|
||||
alg2name["DARTS (2nd)"] = "darts-v2-affine0_BN0-None"
|
||||
alg2name["ENAS"] = "enas-affine0_BN0-None"
|
||||
alg2name["SETN"] = "setn-affine0_BN0-None"
|
||||
else:
|
||||
# alg2name['TAS'] = 'tas-affine0_BN0{:}'.format(suffix)
|
||||
# alg2name['FBNetV2'] = 'fbv2-affine0_BN0{:}'.format(suffix)
|
||||
# alg2name['TuNAS'] = 'tunas-affine0_BN0{:}'.format(suffix)
|
||||
alg2name["channel-wise interpolation"] = "tas-affine0_BN0-AWD0.001{:}".format(
|
||||
suffix
|
||||
)
|
||||
alg2name[
|
||||
"masking + Gumbel-Softmax"
|
||||
] = "mask_gumbel-affine0_BN0-AWD0.001{:}".format(suffix)
|
||||
alg2name["masking + sampling"] = "mask_rl-affine0_BN0-AWD0.0{:}".format(suffix)
|
||||
for alg, name in alg2name.items():
|
||||
alg2path[alg] = os.path.join(ss_dir, dataset, name, "seed-{:}-last-info.pth")
|
||||
alg2data = OrderedDict()
|
||||
for alg, path in alg2path.items():
|
||||
alg2data[alg], ok_num = [], 0
|
||||
for seed in seeds:
|
||||
xpath = path.format(seed)
|
||||
if os.path.isfile(xpath):
|
||||
ok_num += 1
|
||||
else:
|
||||
print("This is an invalid path : {:}".format(xpath))
|
||||
continue
|
||||
data = torch.load(xpath, map_location=torch.device("cpu"))
|
||||
data = torch.load(data["last_checkpoint"], map_location=torch.device("cpu"))
|
||||
alg2data[alg].append(data["genotypes"])
|
||||
print("This algorithm : {:} has {:} valid ckps.".format(alg, ok_num))
|
||||
assert ok_num > 0, "Must have at least 1 valid ckps."
|
||||
return alg2data
|
||||
|
||||
|
||||
y_min_s = {
|
||||
("cifar10", "tss"): 90,
|
||||
("cifar10", "sss"): 92,
|
||||
("cifar100", "tss"): 65,
|
||||
("cifar100", "sss"): 65,
|
||||
("ImageNet16-120", "tss"): 36,
|
||||
("ImageNet16-120", "sss"): 40,
|
||||
}
|
||||
|
||||
y_max_s = {
|
||||
("cifar10", "tss"): 94.5,
|
||||
("cifar10", "sss"): 93.3,
|
||||
("cifar100", "tss"): 72,
|
||||
("cifar100", "sss"): 70,
|
||||
("ImageNet16-120", "tss"): 44,
|
||||
("ImageNet16-120", "sss"): 46,
|
||||
}
|
||||
|
||||
name2label = {
|
||||
"cifar10": "CIFAR-10",
|
||||
"cifar100": "CIFAR-100",
|
||||
"ImageNet16-120": "ImageNet-16-120",
|
||||
}
|
||||
|
||||
|
||||
def visualize_curve(api, vis_save_dir, search_space):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dpi, width, height = 250, 5200, 1400
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 16, 16
|
||||
|
||||
def sub_plot_fn(ax, dataset):
|
||||
alg2data = fetch_data(search_space=search_space, dataset=dataset)
|
||||
alg2accuracies = OrderedDict()
|
||||
epochs = 100
|
||||
colors = ["b", "g", "c", "m", "y", "r"]
|
||||
ax.set_xlim(0, epochs)
|
||||
# ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
|
||||
for idx, (alg, data) in enumerate(alg2data.items()):
|
||||
print("plot alg : {:}".format(alg))
|
||||
xs, accuracies = [], []
|
||||
for iepoch in range(epochs + 1):
|
||||
try:
|
||||
structures, accs = [_[iepoch - 1] for _ in data], []
|
||||
except:
|
||||
raise ValueError(
|
||||
"This alg {:} on {:} has invalid checkpoints.".format(
|
||||
alg, dataset
|
||||
)
|
||||
)
|
||||
for structure in structures:
|
||||
info = api.get_more_info(
|
||||
structure,
|
||||
dataset=dataset,
|
||||
hp=90 if api.search_space_name == "size" else 200,
|
||||
is_random=False,
|
||||
)
|
||||
accs.append(info["test-accuracy"])
|
||||
accuracies.append(sum(accs) / len(accs))
|
||||
xs.append(iepoch)
|
||||
alg2accuracies[alg] = accuracies
|
||||
ax.plot(xs, accuracies, c=colors[idx], label="{:}".format(alg))
|
||||
ax.set_xlabel("The searching epoch", fontsize=LabelSize)
|
||||
ax.set_ylabel(
|
||||
"Test accuracy on {:}".format(name2label[dataset]), fontsize=LabelSize
|
||||
)
|
||||
ax.set_title(
|
||||
"Searching results on {:}".format(name2label[dataset]),
|
||||
fontsize=LabelSize + 4,
|
||||
)
|
||||
ax.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
fig, axs = plt.subplots(1, 3, figsize=figsize)
|
||||
datasets = ["cifar10", "cifar100", "ImageNet16-120"]
|
||||
for dataset, ax in zip(datasets, axs):
|
||||
sub_plot_fn(ax, dataset)
|
||||
print("sub-plot {:} on {:} done.".format(dataset, search_space))
|
||||
save_path = (vis_save_dir / "{:}-ws-curve.png".format(search_space)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
||||
print("{:} save into {:}".format(time_string(), save_path))
|
||||
plt.close("all")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="NAS-Bench-X",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="output/vis-nas-bench/nas-algos",
|
||||
help="Folder to save checkpoints and log.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--search_space",
|
||||
type=str,
|
||||
default="tss",
|
||||
choices=["tss", "sss"],
|
||||
help="Choose the search space.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path(args.save_dir)
|
||||
|
||||
api = create(None, args.search_space, fast_mode=True, verbose=False)
|
||||
visualize_curve(api, save_dir, args.search_space)
|
657
AutoDL-Projects/exps/experimental/visualize-nas-bench-x.py
Normal file
657
AutoDL-Projects/exps/experimental/visualize-nas-bench-x.py
Normal file
@@ -0,0 +1,657 @@
|
||||
###############################################################
|
||||
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
|
||||
###############################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
||||
###############################################################
|
||||
# Usage: python exps/experimental/visualize-nas-bench-x.py
|
||||
###############################################################
|
||||
import os, sys, time, torch, argparse
|
||||
import numpy as np
|
||||
from typing import List, Text, Dict, Any
|
||||
from shutil import copyfile
|
||||
from collections import defaultdict
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import matplotlib
|
||||
import seaborn as sns
|
||||
|
||||
matplotlib.use("agg")
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import dict2config, load_config
|
||||
from log_utils import time_string
|
||||
from models import get_cell_based_tiny_net
|
||||
from nats_bench import create
|
||||
|
||||
|
||||
def visualize_info(api, vis_save_dir, indicator):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
# print ('{:} start to visualize {:} information'.format(time_string(), api))
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
cifar010_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
||||
"cifar10", indicator
|
||||
)
|
||||
cifar100_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
||||
"cifar100", indicator
|
||||
)
|
||||
imagenet_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
||||
"ImageNet16-120", indicator
|
||||
)
|
||||
cifar010_info = torch.load(cifar010_cache_path)
|
||||
cifar100_info = torch.load(cifar100_cache_path)
|
||||
imagenet_info = torch.load(imagenet_cache_path)
|
||||
indexes = list(range(len(cifar010_info["params"])))
|
||||
|
||||
print("{:} start to visualize relative ranking".format(time_string()))
|
||||
|
||||
cifar010_ord_indexes = sorted(indexes, key=lambda i: cifar010_info["test_accs"][i])
|
||||
cifar100_ord_indexes = sorted(indexes, key=lambda i: cifar100_info["test_accs"][i])
|
||||
imagenet_ord_indexes = sorted(indexes, key=lambda i: imagenet_info["test_accs"][i])
|
||||
|
||||
cifar100_labels, imagenet_labels = [], []
|
||||
for idx in cifar010_ord_indexes:
|
||||
cifar100_labels.append(cifar100_ord_indexes.index(idx))
|
||||
imagenet_labels.append(imagenet_ord_indexes.index(idx))
|
||||
print("{:} prepare data done.".format(time_string()))
|
||||
|
||||
dpi, width, height = 200, 1400, 800
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 18, 12
|
||||
resnet_scale, resnet_alpha = 120, 0.5
|
||||
|
||||
fig = plt.figure(figsize=figsize)
|
||||
ax = fig.add_subplot(111)
|
||||
plt.xlim(min(indexes), max(indexes))
|
||||
plt.ylim(min(indexes), max(indexes))
|
||||
# plt.ylabel('y').set_rotation(30)
|
||||
plt.yticks(
|
||||
np.arange(min(indexes), max(indexes), max(indexes) // 3),
|
||||
fontsize=LegendFontsize,
|
||||
rotation="vertical",
|
||||
)
|
||||
plt.xticks(
|
||||
np.arange(min(indexes), max(indexes), max(indexes) // 5),
|
||||
fontsize=LegendFontsize,
|
||||
)
|
||||
ax.scatter(indexes, cifar100_labels, marker="^", s=0.5, c="tab:green", alpha=0.8)
|
||||
ax.scatter(indexes, imagenet_labels, marker="*", s=0.5, c="tab:red", alpha=0.8)
|
||||
ax.scatter(indexes, indexes, marker="o", s=0.5, c="tab:blue", alpha=0.8)
|
||||
ax.scatter([-1], [-1], marker="o", s=100, c="tab:blue", label="CIFAR-10")
|
||||
ax.scatter([-1], [-1], marker="^", s=100, c="tab:green", label="CIFAR-100")
|
||||
ax.scatter([-1], [-1], marker="*", s=100, c="tab:red", label="ImageNet-16-120")
|
||||
plt.grid(zorder=0)
|
||||
ax.set_axisbelow(True)
|
||||
plt.legend(loc=0, fontsize=LegendFontsize)
|
||||
ax.set_xlabel("architecture ranking in CIFAR-10", fontsize=LabelSize)
|
||||
ax.set_ylabel("architecture ranking", fontsize=LabelSize)
|
||||
save_path = (vis_save_dir / "{:}-relative-rank.pdf".format(indicator)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf")
|
||||
save_path = (vis_save_dir / "{:}-relative-rank.png".format(indicator)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
||||
print("{:} save into {:}".format(time_string(), save_path))
|
||||
|
||||
|
||||
def visualize_sss_info(api, dataset, vis_save_dir):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
print("{:} start to visualize {:} information".format(time_string(), dataset))
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
cache_file_path = vis_save_dir / "{:}-cache-sss-info.pth".format(dataset)
|
||||
if not cache_file_path.exists():
|
||||
print("Do not find cache file : {:}".format(cache_file_path))
|
||||
params, flops, train_accs, valid_accs, test_accs = [], [], [], [], []
|
||||
for index in range(len(api)):
|
||||
cost_info = api.get_cost_info(index, dataset, hp="90")
|
||||
params.append(cost_info["params"])
|
||||
flops.append(cost_info["flops"])
|
||||
# accuracy
|
||||
info = api.get_more_info(index, dataset, hp="90", is_random=False)
|
||||
train_accs.append(info["train-accuracy"])
|
||||
test_accs.append(info["test-accuracy"])
|
||||
if dataset == "cifar10":
|
||||
info = api.get_more_info(
|
||||
index, "cifar10-valid", hp="90", is_random=False
|
||||
)
|
||||
valid_accs.append(info["valid-accuracy"])
|
||||
else:
|
||||
valid_accs.append(info["valid-accuracy"])
|
||||
info = {
|
||||
"params": params,
|
||||
"flops": flops,
|
||||
"train_accs": train_accs,
|
||||
"valid_accs": valid_accs,
|
||||
"test_accs": test_accs,
|
||||
}
|
||||
torch.save(info, cache_file_path)
|
||||
else:
|
||||
print("Find cache file : {:}".format(cache_file_path))
|
||||
info = torch.load(cache_file_path)
|
||||
params, flops, train_accs, valid_accs, test_accs = (
|
||||
info["params"],
|
||||
info["flops"],
|
||||
info["train_accs"],
|
||||
info["valid_accs"],
|
||||
info["test_accs"],
|
||||
)
|
||||
print("{:} collect data done.".format(time_string()))
|
||||
|
||||
pyramid = [
|
||||
"8:16:32:48:64",
|
||||
"8:8:16:32:48",
|
||||
"8:8:16:16:32",
|
||||
"8:8:16:16:48",
|
||||
"8:8:16:16:64",
|
||||
"16:16:32:32:64",
|
||||
"32:32:64:64:64",
|
||||
]
|
||||
pyramid_indexes = [api.query_index_by_arch(x) for x in pyramid]
|
||||
largest_indexes = [api.query_index_by_arch("64:64:64:64:64")]
|
||||
|
||||
indexes = list(range(len(params)))
|
||||
dpi, width, height = 250, 8500, 1300
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 24, 24
|
||||
# resnet_scale, resnet_alpha = 120, 0.5
|
||||
xscale, xalpha = 120, 0.8
|
||||
|
||||
fig, axs = plt.subplots(1, 4, figsize=figsize)
|
||||
# ax1, ax2, ax3, ax4, ax5 = axs
|
||||
for ax in axs:
|
||||
for tick in ax.xaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize)
|
||||
ax.yaxis.set_major_formatter(ticker.FormatStrFormatter("%.0f"))
|
||||
for tick in ax.yaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize)
|
||||
ax2, ax3, ax4, ax5 = axs
|
||||
# ax1.xaxis.set_ticks(np.arange(0, max(indexes), max(indexes)//5))
|
||||
# ax1.scatter(indexes, test_accs, marker='o', s=0.5, c='tab:blue')
|
||||
# ax1.set_xlabel('architecture ID', fontsize=LabelSize)
|
||||
# ax1.set_ylabel('test accuracy (%)', fontsize=LabelSize)
|
||||
|
||||
ax2.scatter(params, train_accs, marker="o", s=0.5, c="tab:blue")
|
||||
ax2.scatter(
|
||||
[params[x] for x in pyramid_indexes],
|
||||
[train_accs[x] for x in pyramid_indexes],
|
||||
marker="*",
|
||||
s=xscale,
|
||||
c="tab:orange",
|
||||
label="Pyramid Structure",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax2.scatter(
|
||||
[params[x] for x in largest_indexes],
|
||||
[train_accs[x] for x in largest_indexes],
|
||||
marker="x",
|
||||
s=xscale,
|
||||
c="tab:green",
|
||||
label="Largest Candidate",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax2.set_xlabel("#parameters (MB)", fontsize=LabelSize)
|
||||
ax2.set_ylabel("train accuracy (%)", fontsize=LabelSize)
|
||||
ax2.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
ax3.scatter(params, test_accs, marker="o", s=0.5, c="tab:blue")
|
||||
ax3.scatter(
|
||||
[params[x] for x in pyramid_indexes],
|
||||
[test_accs[x] for x in pyramid_indexes],
|
||||
marker="*",
|
||||
s=xscale,
|
||||
c="tab:orange",
|
||||
label="Pyramid Structure",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax3.scatter(
|
||||
[params[x] for x in largest_indexes],
|
||||
[test_accs[x] for x in largest_indexes],
|
||||
marker="x",
|
||||
s=xscale,
|
||||
c="tab:green",
|
||||
label="Largest Candidate",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax3.set_xlabel("#parameters (MB)", fontsize=LabelSize)
|
||||
ax3.set_ylabel("test accuracy (%)", fontsize=LabelSize)
|
||||
ax3.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
ax4.scatter(flops, train_accs, marker="o", s=0.5, c="tab:blue")
|
||||
ax4.scatter(
|
||||
[flops[x] for x in pyramid_indexes],
|
||||
[train_accs[x] for x in pyramid_indexes],
|
||||
marker="*",
|
||||
s=xscale,
|
||||
c="tab:orange",
|
||||
label="Pyramid Structure",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax4.scatter(
|
||||
[flops[x] for x in largest_indexes],
|
||||
[train_accs[x] for x in largest_indexes],
|
||||
marker="x",
|
||||
s=xscale,
|
||||
c="tab:green",
|
||||
label="Largest Candidate",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax4.set_xlabel("#FLOPs (M)", fontsize=LabelSize)
|
||||
ax4.set_ylabel("train accuracy (%)", fontsize=LabelSize)
|
||||
ax4.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
ax5.scatter(flops, test_accs, marker="o", s=0.5, c="tab:blue")
|
||||
ax5.scatter(
|
||||
[flops[x] for x in pyramid_indexes],
|
||||
[test_accs[x] for x in pyramid_indexes],
|
||||
marker="*",
|
||||
s=xscale,
|
||||
c="tab:orange",
|
||||
label="Pyramid Structure",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax5.scatter(
|
||||
[flops[x] for x in largest_indexes],
|
||||
[test_accs[x] for x in largest_indexes],
|
||||
marker="x",
|
||||
s=xscale,
|
||||
c="tab:green",
|
||||
label="Largest Candidate",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax5.set_xlabel("#FLOPs (M)", fontsize=LabelSize)
|
||||
ax5.set_ylabel("test accuracy (%)", fontsize=LabelSize)
|
||||
ax5.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
save_path = vis_save_dir / "sss-{:}.png".format(dataset)
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
||||
print("{:} save into {:}".format(time_string(), save_path))
|
||||
plt.close("all")
|
||||
|
||||
|
||||
def visualize_tss_info(api, dataset, vis_save_dir):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
print("{:} start to visualize {:} information".format(time_string(), dataset))
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
cache_file_path = vis_save_dir / "{:}-cache-tss-info.pth".format(dataset)
|
||||
if not cache_file_path.exists():
|
||||
print("Do not find cache file : {:}".format(cache_file_path))
|
||||
params, flops, train_accs, valid_accs, test_accs = [], [], [], [], []
|
||||
for index in range(len(api)):
|
||||
cost_info = api.get_cost_info(index, dataset, hp="12")
|
||||
params.append(cost_info["params"])
|
||||
flops.append(cost_info["flops"])
|
||||
# accuracy
|
||||
info = api.get_more_info(index, dataset, hp="200", is_random=False)
|
||||
train_accs.append(info["train-accuracy"])
|
||||
test_accs.append(info["test-accuracy"])
|
||||
if dataset == "cifar10":
|
||||
info = api.get_more_info(
|
||||
index, "cifar10-valid", hp="200", is_random=False
|
||||
)
|
||||
valid_accs.append(info["valid-accuracy"])
|
||||
else:
|
||||
valid_accs.append(info["valid-accuracy"])
|
||||
print("")
|
||||
info = {
|
||||
"params": params,
|
||||
"flops": flops,
|
||||
"train_accs": train_accs,
|
||||
"valid_accs": valid_accs,
|
||||
"test_accs": test_accs,
|
||||
}
|
||||
torch.save(info, cache_file_path)
|
||||
else:
|
||||
print("Find cache file : {:}".format(cache_file_path))
|
||||
info = torch.load(cache_file_path)
|
||||
params, flops, train_accs, valid_accs, test_accs = (
|
||||
info["params"],
|
||||
info["flops"],
|
||||
info["train_accs"],
|
||||
info["valid_accs"],
|
||||
info["test_accs"],
|
||||
)
|
||||
print("{:} collect data done.".format(time_string()))
|
||||
|
||||
resnet = [
|
||||
"|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|"
|
||||
]
|
||||
resnet_indexes = [api.query_index_by_arch(x) for x in resnet]
|
||||
largest_indexes = [
|
||||
api.query_index_by_arch(
|
||||
"|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|nor_conv_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|"
|
||||
)
|
||||
]
|
||||
|
||||
indexes = list(range(len(params)))
|
||||
dpi, width, height = 250, 8500, 1300
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 24, 24
|
||||
# resnet_scale, resnet_alpha = 120, 0.5
|
||||
xscale, xalpha = 120, 0.8
|
||||
|
||||
fig, axs = plt.subplots(1, 4, figsize=figsize)
|
||||
# ax1, ax2, ax3, ax4, ax5 = axs
|
||||
for ax in axs:
|
||||
for tick in ax.xaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize)
|
||||
ax.yaxis.set_major_formatter(ticker.FormatStrFormatter("%.0f"))
|
||||
for tick in ax.yaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize)
|
||||
ax2, ax3, ax4, ax5 = axs
|
||||
# ax1.xaxis.set_ticks(np.arange(0, max(indexes), max(indexes)//5))
|
||||
# ax1.scatter(indexes, test_accs, marker='o', s=0.5, c='tab:blue')
|
||||
# ax1.set_xlabel('architecture ID', fontsize=LabelSize)
|
||||
# ax1.set_ylabel('test accuracy (%)', fontsize=LabelSize)
|
||||
|
||||
ax2.scatter(params, train_accs, marker="o", s=0.5, c="tab:blue")
|
||||
ax2.scatter(
|
||||
[params[x] for x in resnet_indexes],
|
||||
[train_accs[x] for x in resnet_indexes],
|
||||
marker="*",
|
||||
s=xscale,
|
||||
c="tab:orange",
|
||||
label="ResNet",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax2.scatter(
|
||||
[params[x] for x in largest_indexes],
|
||||
[train_accs[x] for x in largest_indexes],
|
||||
marker="x",
|
||||
s=xscale,
|
||||
c="tab:green",
|
||||
label="Largest Candidate",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax2.set_xlabel("#parameters (MB)", fontsize=LabelSize)
|
||||
ax2.set_ylabel("train accuracy (%)", fontsize=LabelSize)
|
||||
ax2.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
ax3.scatter(params, test_accs, marker="o", s=0.5, c="tab:blue")
|
||||
ax3.scatter(
|
||||
[params[x] for x in resnet_indexes],
|
||||
[test_accs[x] for x in resnet_indexes],
|
||||
marker="*",
|
||||
s=xscale,
|
||||
c="tab:orange",
|
||||
label="ResNet",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax3.scatter(
|
||||
[params[x] for x in largest_indexes],
|
||||
[test_accs[x] for x in largest_indexes],
|
||||
marker="x",
|
||||
s=xscale,
|
||||
c="tab:green",
|
||||
label="Largest Candidate",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax3.set_xlabel("#parameters (MB)", fontsize=LabelSize)
|
||||
ax3.set_ylabel("test accuracy (%)", fontsize=LabelSize)
|
||||
ax3.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
ax4.scatter(flops, train_accs, marker="o", s=0.5, c="tab:blue")
|
||||
ax4.scatter(
|
||||
[flops[x] for x in resnet_indexes],
|
||||
[train_accs[x] for x in resnet_indexes],
|
||||
marker="*",
|
||||
s=xscale,
|
||||
c="tab:orange",
|
||||
label="ResNet",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax4.scatter(
|
||||
[flops[x] for x in largest_indexes],
|
||||
[train_accs[x] for x in largest_indexes],
|
||||
marker="x",
|
||||
s=xscale,
|
||||
c="tab:green",
|
||||
label="Largest Candidate",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax4.set_xlabel("#FLOPs (M)", fontsize=LabelSize)
|
||||
ax4.set_ylabel("train accuracy (%)", fontsize=LabelSize)
|
||||
ax4.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
ax5.scatter(flops, test_accs, marker="o", s=0.5, c="tab:blue")
|
||||
ax5.scatter(
|
||||
[flops[x] for x in resnet_indexes],
|
||||
[test_accs[x] for x in resnet_indexes],
|
||||
marker="*",
|
||||
s=xscale,
|
||||
c="tab:orange",
|
||||
label="ResNet",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax5.scatter(
|
||||
[flops[x] for x in largest_indexes],
|
||||
[test_accs[x] for x in largest_indexes],
|
||||
marker="x",
|
||||
s=xscale,
|
||||
c="tab:green",
|
||||
label="Largest Candidate",
|
||||
alpha=xalpha,
|
||||
)
|
||||
ax5.set_xlabel("#FLOPs (M)", fontsize=LabelSize)
|
||||
ax5.set_ylabel("test accuracy (%)", fontsize=LabelSize)
|
||||
ax5.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
save_path = vis_save_dir / "tss-{:}.png".format(dataset)
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
||||
print("{:} save into {:}".format(time_string(), save_path))
|
||||
plt.close("all")
|
||||
|
||||
|
||||
def visualize_rank_info(api, vis_save_dir, indicator):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
# print ('{:} start to visualize {:} information'.format(time_string(), api))
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
cifar010_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
||||
"cifar10", indicator
|
||||
)
|
||||
cifar100_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
||||
"cifar100", indicator
|
||||
)
|
||||
imagenet_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
||||
"ImageNet16-120", indicator
|
||||
)
|
||||
cifar010_info = torch.load(cifar010_cache_path)
|
||||
cifar100_info = torch.load(cifar100_cache_path)
|
||||
imagenet_info = torch.load(imagenet_cache_path)
|
||||
indexes = list(range(len(cifar010_info["params"])))
|
||||
|
||||
print("{:} start to visualize relative ranking".format(time_string()))
|
||||
|
||||
dpi, width, height = 250, 3800, 1200
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 14, 14
|
||||
|
||||
fig, axs = plt.subplots(1, 3, figsize=figsize)
|
||||
ax1, ax2, ax3 = axs
|
||||
|
||||
def get_labels(info):
|
||||
ord_test_indexes = sorted(indexes, key=lambda i: info["test_accs"][i])
|
||||
ord_valid_indexes = sorted(indexes, key=lambda i: info["valid_accs"][i])
|
||||
labels = []
|
||||
for idx in ord_test_indexes:
|
||||
labels.append(ord_valid_indexes.index(idx))
|
||||
return labels
|
||||
|
||||
def plot_ax(labels, ax, name):
|
||||
for tick in ax.xaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize)
|
||||
for tick in ax.yaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize)
|
||||
tick.label.set_rotation(90)
|
||||
ax.set_xlim(min(indexes), max(indexes))
|
||||
ax.set_ylim(min(indexes), max(indexes))
|
||||
ax.yaxis.set_ticks(np.arange(min(indexes), max(indexes), max(indexes) // 3))
|
||||
ax.xaxis.set_ticks(np.arange(min(indexes), max(indexes), max(indexes) // 5))
|
||||
ax.scatter(indexes, labels, marker="^", s=0.5, c="tab:green", alpha=0.8)
|
||||
ax.scatter(indexes, indexes, marker="o", s=0.5, c="tab:blue", alpha=0.8)
|
||||
ax.scatter(
|
||||
[-1], [-1], marker="^", s=100, c="tab:green", label="{:} test".format(name)
|
||||
)
|
||||
ax.scatter(
|
||||
[-1],
|
||||
[-1],
|
||||
marker="o",
|
||||
s=100,
|
||||
c="tab:blue",
|
||||
label="{:} validation".format(name),
|
||||
)
|
||||
ax.legend(loc=4, fontsize=LegendFontsize)
|
||||
ax.set_xlabel("ranking on the {:} validation".format(name), fontsize=LabelSize)
|
||||
ax.set_ylabel("architecture ranking", fontsize=LabelSize)
|
||||
|
||||
labels = get_labels(cifar010_info)
|
||||
plot_ax(labels, ax1, "CIFAR-10")
|
||||
labels = get_labels(cifar100_info)
|
||||
plot_ax(labels, ax2, "CIFAR-100")
|
||||
labels = get_labels(imagenet_info)
|
||||
plot_ax(labels, ax3, "ImageNet-16-120")
|
||||
|
||||
save_path = (
|
||||
vis_save_dir / "{:}-same-relative-rank.pdf".format(indicator)
|
||||
).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf")
|
||||
save_path = (
|
||||
vis_save_dir / "{:}-same-relative-rank.png".format(indicator)
|
||||
).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
||||
print("{:} save into {:}".format(time_string(), save_path))
|
||||
plt.close("all")
|
||||
|
||||
|
||||
def calculate_correlation(*vectors):
|
||||
matrix = []
|
||||
for i, vectori in enumerate(vectors):
|
||||
x = []
|
||||
for j, vectorj in enumerate(vectors):
|
||||
x.append(np.corrcoef(vectori, vectorj)[0, 1])
|
||||
matrix.append(x)
|
||||
return np.array(matrix)
|
||||
|
||||
|
||||
def visualize_all_rank_info(api, vis_save_dir, indicator):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
# print ('{:} start to visualize {:} information'.format(time_string(), api))
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
cifar010_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
||||
"cifar10", indicator
|
||||
)
|
||||
cifar100_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
||||
"cifar100", indicator
|
||||
)
|
||||
imagenet_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
||||
"ImageNet16-120", indicator
|
||||
)
|
||||
cifar010_info = torch.load(cifar010_cache_path)
|
||||
cifar100_info = torch.load(cifar100_cache_path)
|
||||
imagenet_info = torch.load(imagenet_cache_path)
|
||||
indexes = list(range(len(cifar010_info["params"])))
|
||||
|
||||
print("{:} start to visualize relative ranking".format(time_string()))
|
||||
|
||||
dpi, width, height = 250, 3200, 1400
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 14, 14
|
||||
|
||||
fig, axs = plt.subplots(1, 2, figsize=figsize)
|
||||
ax1, ax2 = axs
|
||||
|
||||
sns_size = 15
|
||||
CoRelMatrix = calculate_correlation(
|
||||
cifar010_info["valid_accs"],
|
||||
cifar010_info["test_accs"],
|
||||
cifar100_info["valid_accs"],
|
||||
cifar100_info["test_accs"],
|
||||
imagenet_info["valid_accs"],
|
||||
imagenet_info["test_accs"],
|
||||
)
|
||||
|
||||
sns.heatmap(
|
||||
CoRelMatrix,
|
||||
annot=True,
|
||||
annot_kws={"size": sns_size},
|
||||
fmt=".3f",
|
||||
linewidths=0.5,
|
||||
ax=ax1,
|
||||
xticklabels=["C10-V", "C10-T", "C100-V", "C100-T", "I120-V", "I120-T"],
|
||||
yticklabels=["C10-V", "C10-T", "C100-V", "C100-T", "I120-V", "I120-T"],
|
||||
)
|
||||
|
||||
selected_indexes, acc_bar = [], 92
|
||||
for i, acc in enumerate(cifar010_info["test_accs"]):
|
||||
if acc > acc_bar:
|
||||
selected_indexes.append(i)
|
||||
cifar010_valid_accs = np.array(cifar010_info["valid_accs"])[selected_indexes]
|
||||
cifar010_test_accs = np.array(cifar010_info["test_accs"])[selected_indexes]
|
||||
cifar100_valid_accs = np.array(cifar100_info["valid_accs"])[selected_indexes]
|
||||
cifar100_test_accs = np.array(cifar100_info["test_accs"])[selected_indexes]
|
||||
imagenet_valid_accs = np.array(imagenet_info["valid_accs"])[selected_indexes]
|
||||
imagenet_test_accs = np.array(imagenet_info["test_accs"])[selected_indexes]
|
||||
CoRelMatrix = calculate_correlation(
|
||||
cifar010_valid_accs,
|
||||
cifar010_test_accs,
|
||||
cifar100_valid_accs,
|
||||
cifar100_test_accs,
|
||||
imagenet_valid_accs,
|
||||
imagenet_test_accs,
|
||||
)
|
||||
|
||||
sns.heatmap(
|
||||
CoRelMatrix,
|
||||
annot=True,
|
||||
annot_kws={"size": sns_size},
|
||||
fmt=".3f",
|
||||
linewidths=0.5,
|
||||
ax=ax2,
|
||||
xticklabels=["C10-V", "C10-T", "C100-V", "C100-T", "I120-V", "I120-T"],
|
||||
yticklabels=["C10-V", "C10-T", "C100-V", "C100-T", "I120-V", "I120-T"],
|
||||
)
|
||||
ax1.set_title("Correlation coefficient over ALL candidates")
|
||||
ax2.set_title(
|
||||
"Correlation coefficient over candidates with accuracy > {:}%".format(acc_bar)
|
||||
)
|
||||
save_path = (vis_save_dir / "{:}-all-relative-rank.png".format(indicator)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
||||
print("{:} save into {:}".format(time_string(), save_path))
|
||||
plt.close("all")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="NAS-Bench-X",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="output/vis-nas-bench",
|
||||
help="Folder to save checkpoints and log.",
|
||||
)
|
||||
# use for train the model
|
||||
args = parser.parse_args()
|
||||
|
||||
to_save_dir = Path(args.save_dir)
|
||||
|
||||
datasets = ["cifar10", "cifar100", "ImageNet16-120"]
|
||||
api201 = create(None, "tss", verbose=True)
|
||||
for xdata in datasets:
|
||||
visualize_tss_info(api201, xdata, to_save_dir)
|
||||
|
||||
api_sss = create(None, "size", verbose=True)
|
||||
for xdata in datasets:
|
||||
visualize_sss_info(api_sss, xdata, to_save_dir)
|
||||
|
||||
visualize_info(None, to_save_dir, "tss")
|
||||
visualize_info(None, to_save_dir, "sss")
|
||||
visualize_rank_info(None, to_save_dir, "tss")
|
||||
visualize_rank_info(None, to_save_dir, "sss")
|
||||
|
||||
visualize_all_rank_info(None, to_save_dir, "tss")
|
||||
visualize_all_rank_info(None, to_save_dir, "sss")
|
Reference in New Issue
Block a user