add autodl

This commit is contained in:
mhz
2024-08-25 18:02:31 +02:00
parent 192f286cfb
commit a0a25f291c
431 changed files with 50646 additions and 8 deletions

View File

@@ -0,0 +1,289 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import sys, time, torch, random, argparse
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from pathlib import Path
from xautodl.config_utils import load_config, obtain_cls_kd_args as obtain_args
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
)
from xautodl.procedures import get_optim_scheduler, get_procedures
from xautodl.datasets import get_datasets
from xautodl.models import obtain_model, load_net_from_checkpoint
from xautodl.utils import get_model_infos
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
def main(args):
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# torch.set_num_threads(args.workers)
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(
args.dataset, args.data_path, args.cutout_length
)
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
)
valid_loader = torch.utils.data.DataLoader(
valid_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
)
# get configures
model_config = load_config(args.model_config, {"class_num": class_num}, logger)
optim_config = load_config(
args.optim_config,
{
"class_num": class_num,
"KD_alpha": args.KD_alpha,
"KD_temperature": args.KD_temperature,
},
logger,
)
# load checkpoint
teacher_base = load_net_from_checkpoint(args.KD_checkpoint)
teacher = torch.nn.DataParallel(teacher_base).cuda()
base_model = obtain_model(model_config)
flop, param = get_model_infos(base_model, xshape)
logger.log("Student ====>>>>:\n{:}".format(base_model))
logger.log("Teacher ====>>>>:\n{:}".format(teacher_base))
logger.log("model information : {:}".format(base_model.get_message()))
logger.log("-" * 50)
logger.log(
"Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(
param, flop, flop / 1e3
)
)
logger.log("-" * 50)
logger.log("train_data : {:}".format(train_data))
logger.log("valid_data : {:}".format(valid_data))
optimizer, scheduler, criterion = get_optim_scheduler(
base_model.parameters(), optim_config
)
logger.log("optimizer : {:}".format(optimizer))
logger.log("scheduler : {:}".format(scheduler))
logger.log("criterion : {:}".format(criterion))
last_info, model_base_path, model_best_path = (
logger.path("info"),
logger.path("model"),
logger.path("best"),
)
network, criterion = torch.nn.DataParallel(base_model).cuda(), criterion.cuda()
if last_info.exists(): # automatically resume from previous checkpoint
logger.log(
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
)
last_info = torch.load(last_info)
start_epoch = last_info["epoch"] + 1
checkpoint = torch.load(last_info["last_checkpoint"])
base_model.load_state_dict(checkpoint["base-model"])
scheduler.load_state_dict(checkpoint["scheduler"])
optimizer.load_state_dict(checkpoint["optimizer"])
valid_accuracies = checkpoint["valid_accuracies"]
max_bytes = checkpoint["max_bytes"]
logger.log(
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
last_info, start_epoch
)
)
elif args.resume is not None:
assert Path(args.resume).exists(), "Can not find the resume file : {:}".format(
args.resume
)
checkpoint = torch.load(args.resume)
start_epoch = checkpoint["epoch"] + 1
base_model.load_state_dict(checkpoint["base-model"])
scheduler.load_state_dict(checkpoint["scheduler"])
optimizer.load_state_dict(checkpoint["optimizer"])
valid_accuracies = checkpoint["valid_accuracies"]
max_bytes = checkpoint["max_bytes"]
logger.log(
"=> loading checkpoint from '{:}' start with {:}-th epoch.".format(
args.resume, start_epoch
)
)
elif args.init_model is not None:
assert Path(
args.init_model
).exists(), "Can not find the initialization file : {:}".format(args.init_model)
checkpoint = torch.load(args.init_model)
base_model.load_state_dict(checkpoint["base-model"])
start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
logger.log("=> initialize the model from {:}".format(args.init_model))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
train_func, valid_func = get_procedures(args.procedure)
total_epoch = optim_config.epochs + optim_config.warmup
# Main Training and Evaluation Loop
start_time = time.time()
epoch_time = AverageMeter()
for epoch in range(start_epoch, total_epoch):
scheduler.update(epoch, 0.0)
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)
)
epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch)
LRs = scheduler.get_lr()
find_best = False
logger.log(
"\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}".format(
time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler
)
)
# train for one epoch
train_loss, train_acc1, train_acc5 = train_func(
train_loader,
teacher,
network,
criterion,
scheduler,
optimizer,
optim_config,
epoch_str,
args.print_freq,
logger,
)
# log the results
logger.log(
"***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}".format(
time_string(), epoch_str, train_loss, train_acc1, train_acc5
)
)
# evaluate the performance
if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
logger.log("-" * 150)
valid_loss, valid_acc1, valid_acc5 = valid_func(
valid_loader,
teacher,
network,
criterion,
optim_config,
epoch_str,
args.print_freq_eval,
logger,
)
valid_accuracies[epoch] = valid_acc1
logger.log(
"***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}".format(
time_string(),
epoch_str,
valid_loss,
valid_acc1,
valid_acc5,
valid_accuracies["best"],
100 - valid_accuracies["best"],
)
)
if valid_acc1 > valid_accuracies["best"]:
valid_accuracies["best"] = valid_acc1
find_best = True
logger.log(
"Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.".format(
epoch,
valid_acc1,
valid_acc5,
100 - valid_acc1,
100 - valid_acc5,
model_best_path,
)
)
num_bytes = (
torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0
)
logger.log(
"[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format(
next(network.parameters()).device,
int(num_bytes),
num_bytes / 1e3,
num_bytes / 1e6,
num_bytes / 1e9,
)
)
max_bytes[epoch] = num_bytes
if epoch % 10 == 0:
torch.cuda.empty_cache()
# save checkpoint
save_path = save_checkpoint(
{
"epoch": epoch,
"args": deepcopy(args),
"max_bytes": deepcopy(max_bytes),
"FLOP": flop,
"PARAM": param,
"valid_accuracies": deepcopy(valid_accuracies),
"model-config": model_config._asdict(),
"optim-config": optim_config._asdict(),
"base-model": base_model.state_dict(),
"scheduler": scheduler.state_dict(),
"optimizer": optimizer.state_dict(),
},
model_base_path,
logger,
)
if find_best:
copy_checkpoint(model_base_path, model_best_path, logger)
last_info = save_checkpoint(
{
"epoch": epoch,
"args": deepcopy(args),
"last_checkpoint": save_path,
},
logger.path("info"),
logger,
)
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log("\n" + "-" * 200)
logger.log(
"||| Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(
param, flop, flop / 1e3
)
)
logger.log(
"Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}".format(
convert_secs2time(epoch_time.sum, True),
max(v for k, v in max_bytes.items()) / 1e6,
logger.path("info"),
)
)
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
args = obtain_args()
main(args)

View File

@@ -0,0 +1,115 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import os, sys, time, torch, random, argparse
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from xautodl.config_utils import load_config, dict2config
from xautodl.procedures import get_procedures, get_optim_scheduler
from xautodl.datasets import get_datasets
from xautodl.models import obtain_model
from xautodl.utils import get_model_infos
from xautodl.log_utils import PrintLogger, time_string
def main(args):
assert os.path.isdir(args.data_path), "invalid data-path : {:}".format(
args.data_path
)
assert os.path.isfile(args.checkpoint), "invalid checkpoint : {:}".format(
args.checkpoint
)
checkpoint = torch.load(args.checkpoint)
xargs = checkpoint["args"]
train_data, valid_data, xshape, class_num = get_datasets(
xargs.dataset, args.data_path, xargs.cutout_length
)
valid_loader = torch.utils.data.DataLoader(
valid_data,
batch_size=xargs.batch_size,
shuffle=False,
num_workers=xargs.workers,
pin_memory=True,
)
logger = PrintLogger()
model_config = dict2config(checkpoint["model-config"], logger)
base_model = obtain_model(model_config)
flop, param = get_model_infos(base_model, xshape)
logger.log("model ====>>>>:\n{:}".format(base_model))
logger.log("model information : {:}".format(base_model.get_message()))
logger.log("-" * 50)
logger.log(
"Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(
param, flop, flop / 1e3
)
)
logger.log("-" * 50)
logger.log("valid_data : {:}".format(valid_data))
optim_config = dict2config(checkpoint["optim-config"], logger)
_, _, criterion = get_optim_scheduler(base_model.parameters(), optim_config)
logger.log("criterion : {:}".format(criterion))
base_model.load_state_dict(checkpoint["base-model"])
_, valid_func = get_procedures(xargs.procedure)
logger.log("initialize the CNN done, evaluate it using {:}".format(valid_func))
network = torch.nn.DataParallel(base_model).cuda()
try:
valid_loss, valid_acc1, valid_acc5 = valid_func(
valid_loader,
network,
criterion,
optim_config,
"pure-evaluation",
xargs.print_freq_eval,
logger,
)
except:
_, valid_func = get_procedures("basic")
valid_loss, valid_acc1, valid_acc5 = valid_func(
valid_loader,
network,
criterion,
optim_config,
"pure-evaluation",
xargs.print_freq_eval,
logger,
)
num_bytes = torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0
logger.log(
"***{:s}*** EVALUATION loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f}, error@1 = {:.2f}, error@5 = {:.2f}".format(
time_string(),
valid_loss,
valid_acc1,
valid_acc5,
100 - valid_acc1,
100 - valid_acc5,
)
)
logger.log(
"[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format(
next(network.parameters()).device,
int(num_bytes),
num_bytes / 1e3,
num_bytes / 1e6,
num_bytes / 1e9,
)
)
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser("Evaluate-CNN")
parser.add_argument("--data_path", type=str, help="Path to dataset.")
parser.add_argument(
"--checkpoint", type=str, help="Choose between Cifar10/100 and ImageNet."
)
args = parser.parse_args()
assert torch.cuda.is_available(), "torch.cuda is not available"
main(args)

View File

@@ -0,0 +1,291 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import sys, time, torch, random, argparse
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from pathlib import Path
from xautodl.datasets import get_datasets
from xautodl.config_utils import load_config, obtain_basic_args as obtain_args
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
)
from xautodl.procedures import get_optim_scheduler, get_procedures
from xautodl.models import obtain_model
from xautodl.nas_infer_model import obtain_nas_infer_model
from xautodl.utils import get_model_infos
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
def main(args):
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# torch.set_num_threads(args.workers)
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(
args.dataset, args.data_path, args.cutout_length
)
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
)
valid_loader = torch.utils.data.DataLoader(
valid_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
)
# get configures
model_config = load_config(args.model_config, {"class_num": class_num}, logger)
optim_config = load_config(args.optim_config, {"class_num": class_num}, logger)
if args.model_source == "normal":
base_model = obtain_model(model_config)
elif args.model_source == "nas":
base_model = obtain_nas_infer_model(model_config, args.extra_model_path)
elif args.model_source == "autodl-searched":
base_model = obtain_model(model_config, args.extra_model_path)
else:
raise ValueError("invalid model-source : {:}".format(args.model_source))
flop, param = get_model_infos(base_model, xshape)
logger.log("model ====>>>>:\n{:}".format(base_model))
logger.log("model information : {:}".format(base_model.get_message()))
logger.log("-" * 50)
logger.log(
"Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(
param, flop, flop / 1e3
)
)
logger.log("-" * 50)
logger.log("train_data : {:}".format(train_data))
logger.log("valid_data : {:}".format(valid_data))
optimizer, scheduler, criterion = get_optim_scheduler(
base_model.parameters(), optim_config
)
logger.log("optimizer : {:}".format(optimizer))
logger.log("scheduler : {:}".format(scheduler))
logger.log("criterion : {:}".format(criterion))
last_info, model_base_path, model_best_path = (
logger.path("info"),
logger.path("model"),
logger.path("best"),
)
network, criterion = torch.nn.DataParallel(base_model).cuda(), criterion.cuda()
if last_info.exists(): # automatically resume from previous checkpoint
logger.log(
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
)
last_infox = torch.load(last_info)
start_epoch = last_infox["epoch"] + 1
last_checkpoint_path = last_infox["last_checkpoint"]
if not last_checkpoint_path.exists():
logger.log(
"Does not find {:}, try another path".format(last_checkpoint_path)
)
last_checkpoint_path = (
last_info.parent
/ last_checkpoint_path.parent.name
/ last_checkpoint_path.name
)
checkpoint = torch.load(last_checkpoint_path)
base_model.load_state_dict(checkpoint["base-model"])
scheduler.load_state_dict(checkpoint["scheduler"])
optimizer.load_state_dict(checkpoint["optimizer"])
valid_accuracies = checkpoint["valid_accuracies"]
max_bytes = checkpoint["max_bytes"]
logger.log(
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
last_info, start_epoch
)
)
elif args.resume is not None:
assert Path(args.resume).exists(), "Can not find the resume file : {:}".format(
args.resume
)
checkpoint = torch.load(args.resume)
start_epoch = checkpoint["epoch"] + 1
base_model.load_state_dict(checkpoint["base-model"])
scheduler.load_state_dict(checkpoint["scheduler"])
optimizer.load_state_dict(checkpoint["optimizer"])
valid_accuracies = checkpoint["valid_accuracies"]
max_bytes = checkpoint["max_bytes"]
logger.log(
"=> loading checkpoint from '{:}' start with {:}-th epoch.".format(
args.resume, start_epoch
)
)
elif args.init_model is not None:
assert Path(
args.init_model
).exists(), "Can not find the initialization file : {:}".format(args.init_model)
checkpoint = torch.load(args.init_model)
base_model.load_state_dict(checkpoint["base-model"])
start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
logger.log("=> initialize the model from {:}".format(args.init_model))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
train_func, valid_func = get_procedures(args.procedure)
total_epoch = optim_config.epochs + optim_config.warmup
# Main Training and Evaluation Loop
start_time = time.time()
epoch_time = AverageMeter()
for epoch in range(start_epoch, total_epoch):
scheduler.update(epoch, 0.0)
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)
)
epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch)
LRs = scheduler.get_lr()
find_best = False
# set-up drop-out ratio
if hasattr(base_model, "update_drop_path"):
base_model.update_drop_path(
model_config.drop_path_prob * epoch / total_epoch
)
logger.log(
"\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}".format(
time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler
)
)
# train for one epoch
train_loss, train_acc1, train_acc5 = train_func(
train_loader,
network,
criterion,
scheduler,
optimizer,
optim_config,
epoch_str,
args.print_freq,
logger,
)
# log the results
logger.log(
"***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}".format(
time_string(), epoch_str, train_loss, train_acc1, train_acc5
)
)
# evaluate the performance
if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
logger.log("-" * 150)
valid_loss, valid_acc1, valid_acc5 = valid_func(
valid_loader,
network,
criterion,
optim_config,
epoch_str,
args.print_freq_eval,
logger,
)
valid_accuracies[epoch] = valid_acc1
logger.log(
"***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}".format(
time_string(),
epoch_str,
valid_loss,
valid_acc1,
valid_acc5,
valid_accuracies["best"],
100 - valid_accuracies["best"],
)
)
if valid_acc1 > valid_accuracies["best"]:
valid_accuracies["best"] = valid_acc1
find_best = True
logger.log(
"Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.".format(
epoch,
valid_acc1,
valid_acc5,
100 - valid_acc1,
100 - valid_acc5,
model_best_path,
)
)
num_bytes = (
torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0
)
logger.log(
"[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format(
next(network.parameters()).device,
int(num_bytes),
num_bytes / 1e3,
num_bytes / 1e6,
num_bytes / 1e9,
)
)
max_bytes[epoch] = num_bytes
if epoch % 10 == 0:
torch.cuda.empty_cache()
# save checkpoint
save_path = save_checkpoint(
{
"epoch": epoch,
"args": deepcopy(args),
"max_bytes": deepcopy(max_bytes),
"FLOP": flop,
"PARAM": param,
"valid_accuracies": deepcopy(valid_accuracies),
"model-config": model_config._asdict(),
"optim-config": optim_config._asdict(),
"base-model": base_model.state_dict(),
"scheduler": scheduler.state_dict(),
"optimizer": optimizer.state_dict(),
},
model_base_path,
logger,
)
if find_best:
copy_checkpoint(model_base_path, model_best_path, logger)
last_info = save_checkpoint(
{
"epoch": epoch,
"args": deepcopy(args),
"last_checkpoint": save_path,
},
logger.path("info"),
logger,
)
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log("\n" + "-" * 200)
logger.log(
"Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}".format(
convert_secs2time(epoch_time.sum, True),
max(v for k, v in max_bytes.items()) / 1e6,
logger.path("info"),
)
)
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
args = obtain_args()
main(args)

View File

@@ -0,0 +1,157 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.06 #
#####################################################
# python exps/basic/xmain.py --save_dir outputs/x #
#####################################################
import os, sys, time, torch, random, argparse
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
print("LIB-DIR: {:}".format(lib_dir))
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from xautodl import xmisc
def main(args):
train_data = xmisc.nested_call_by_yaml(args.train_data_config, args.data_path)
valid_data = xmisc.nested_call_by_yaml(args.valid_data_config, args.data_path)
logger = xmisc.Logger(args.save_dir, prefix="seed-{:}-".format(args.rand_seed))
logger.log("Create the logger: {:}".format(logger))
logger.log("Arguments : -------------------------------")
for name, value in args._get_kwargs():
logger.log("{:16} : {:}".format(name, value))
logger.log("Python Version : {:}".format(sys.version.replace("\n", " ")))
logger.log("PyTorch Version : {:}".format(torch.__version__))
logger.log("cuDNN Version : {:}".format(torch.backends.cudnn.version()))
logger.log("CUDA available : {:}".format(torch.cuda.is_available()))
logger.log("CUDA GPU numbers : {:}".format(torch.cuda.device_count()))
logger.log(
"CUDA_VISIBLE_DEVICES : {:}".format(
os.environ["CUDA_VISIBLE_DEVICES"]
if "CUDA_VISIBLE_DEVICES" in os.environ
else "None"
)
)
logger.log("The training data is:\n{:}".format(train_data))
logger.log("The validation data is:\n{:}".format(valid_data))
model = xmisc.nested_call_by_yaml(args.model_config)
logger.log("The model is:\n{:}".format(model))
logger.log("The model size is {:.4f} M".format(xmisc.count_parameters(model)))
train_loader = torch.utils.data.DataLoader(
train_data,
batch_sampler=xmisc.BatchSampler(train_data, args.batch_size, args.steps),
num_workers=args.workers,
pin_memory=True,
)
valid_loader = torch.utils.data.DataLoader(
valid_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
drop_last=False,
)
iters_per_epoch = len(train_data) // args.batch_size
logger.log("The training loader: {:}".format(train_loader))
logger.log("The validation loader: {:}".format(valid_loader))
optimizer = xmisc.nested_call_by_yaml(
args.optim_config,
model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
)
objective = xmisc.nested_call_by_yaml(args.loss_config)
metric = xmisc.nested_call_by_yaml(args.metric_config)
logger.log("The optimizer is:\n{:}".format(optimizer))
logger.log("The objective is {:}".format(objective))
logger.log("The metric is {:}".format(metric))
logger.log(
"The iters_per_epoch = {:}, estimated epochs = {:}".format(
iters_per_epoch, args.steps // iters_per_epoch
)
)
model, objective = torch.nn.DataParallel(model).cuda(), objective.cuda()
scheduler = xmisc.LRMultiplier(
optimizer, xmisc.get_scheduler(args.scheduler, args.lr), args.steps
)
start_time, iter_time = time.time(), xmisc.AverageMeter()
for xiter, data in enumerate(train_loader):
need_time = "Time Left: {:}".format(
xmisc.time_utils.convert_secs2time(
iter_time.avg * (len(train_loader) - xiter), True
)
)
iter_str = "{:6d}/{:06d}".format(xiter, len(train_loader))
inputs, targets = data
targets = targets.cuda(non_blocking=True)
model.train()
optimizer.zero_grad()
outputs = model(inputs)
loss = objective(outputs, targets)
loss.backward()
optimizer.step()
scheduler.step()
if xiter % iters_per_epoch == 0:
logger.log("TRAIN [{:}] loss = {:.6f}".format(iter_str, loss.item()))
# measure elapsed time
iter_time.update(time.time() - start_time)
start_time = time.time()
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Train a classification model with a loss function.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--save_dir", type=str, help="Folder to save checkpoints and log."
)
parser.add_argument("--resume", type=str, help="Resume path.")
parser.add_argument("--init_model", type=str, help="The initialization model path.")
parser.add_argument("--model_config", type=str, help="The path to the model config")
parser.add_argument("--optim_config", type=str, help="The optimizer config file.")
parser.add_argument("--loss_config", type=str, help="The loss config file.")
parser.add_argument("--metric_config", type=str, help="The metric config file.")
parser.add_argument(
"--train_data_config", type=str, help="The training dataset config path."
)
parser.add_argument(
"--valid_data_config", type=str, help="The validation dataset config path."
)
parser.add_argument("--data_path", type=str, help="The path to the dataset.")
# Optimization options
parser.add_argument("--lr", type=float, help="The learning rate")
parser.add_argument("--weight_decay", type=float, help="The weight decay")
parser.add_argument("--scheduler", type=str, help="The scheduler indicator.")
parser.add_argument("--steps", type=int, help="The total number of steps.")
parser.add_argument("--batch_size", type=int, default=256, help="The batch size.")
parser.add_argument("--workers", type=int, default=4, help="The number of workers")
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
if args.save_dir is None:
raise ValueError("The save-path argument can not be None")
main(args)