add autodl
This commit is contained in:
232
AutoDL-Projects/exps/NATS-Bench/draw-fig8.py
Normal file
232
AutoDL-Projects/exps/NATS-Bench/draw-fig8.py
Normal file
@@ -0,0 +1,232 @@
|
||||
###############################################################
|
||||
# NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021 #
|
||||
# The code to draw Figure 6 in our paper. #
|
||||
###############################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
||||
###############################################################
|
||||
# Usage: python exps/NATS-Bench/draw-fig8.py #
|
||||
###############################################################
|
||||
import os, gc, sys, time, torch, argparse
|
||||
import numpy as np
|
||||
from typing import List, Text, Dict, Any
|
||||
from shutil import copyfile
|
||||
from collections import defaultdict, OrderedDict
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import matplotlib
|
||||
import seaborn as sns
|
||||
|
||||
matplotlib.use("agg")
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
|
||||
from xautodl.config_utils import dict2config, load_config
|
||||
from xautodl.log_utils import time_string
|
||||
from nats_bench import create
|
||||
|
||||
|
||||
plt.rcParams.update(
|
||||
{"text.usetex": True, "font.family": "sans-serif", "font.sans-serif": ["Helvetica"]}
|
||||
)
|
||||
## for Palatino and other serif fonts use:
|
||||
plt.rcParams.update(
|
||||
{
|
||||
"text.usetex": True,
|
||||
"font.family": "serif",
|
||||
"font.serif": ["Palatino"],
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def fetch_data(root_dir="./output/search", search_space="tss", dataset=None):
|
||||
ss_dir = "{:}-{:}".format(root_dir, search_space)
|
||||
alg2all = OrderedDict()
|
||||
# alg2name['REINFORCE'] = 'REINFORCE-0.01'
|
||||
# alg2name['RANDOM'] = 'RANDOM'
|
||||
# alg2name['BOHB'] = 'BOHB'
|
||||
if search_space == "tss":
|
||||
hp = "$\mathcal{H}^{1}$"
|
||||
if dataset == "cifar10":
|
||||
suffixes = ["-T1200000", "-T1200000-FULL"]
|
||||
elif search_space == "sss":
|
||||
hp = "$\mathcal{H}^{2}$"
|
||||
if dataset == "cifar10":
|
||||
suffixes = ["-T200000", "-T200000-FULL"]
|
||||
else:
|
||||
raise ValueError("Unkonwn search space: {:}".format(search_space))
|
||||
|
||||
alg2all[r"REA ($\mathcal{H}^{0}$)"] = dict(
|
||||
path=os.path.join(ss_dir, dataset + suffixes[0], "R-EA-SS3", "results.pth"),
|
||||
color="b",
|
||||
linestyle="-",
|
||||
)
|
||||
alg2all[r"REA ({:})".format(hp)] = dict(
|
||||
path=os.path.join(ss_dir, dataset + suffixes[1], "R-EA-SS3", "results.pth"),
|
||||
color="b",
|
||||
linestyle="--",
|
||||
)
|
||||
|
||||
for alg, xdata in alg2all.items():
|
||||
data = torch.load(xdata["path"])
|
||||
for index, info in data.items():
|
||||
info["time_w_arch"] = [
|
||||
(x, y) for x, y in zip(info["all_total_times"], info["all_archs"])
|
||||
]
|
||||
for j, arch in enumerate(info["all_archs"]):
|
||||
assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format(
|
||||
alg, search_space, dataset, index, j
|
||||
)
|
||||
xdata["data"] = data
|
||||
return alg2all
|
||||
|
||||
|
||||
def query_performance(api, data, dataset, ticket):
|
||||
results, is_size_space = [], api.search_space_name == "size"
|
||||
for i, info in data.items():
|
||||
time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket))
|
||||
time_a, arch_a = time_w_arch[0]
|
||||
time_b, arch_b = time_w_arch[1]
|
||||
info_a = api.get_more_info(
|
||||
arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
|
||||
)
|
||||
info_b = api.get_more_info(
|
||||
arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
|
||||
)
|
||||
accuracy_a, accuracy_b = info_a["test-accuracy"], info_b["test-accuracy"]
|
||||
interplate = (time_b - ticket) / (time_b - time_a) * accuracy_a + (
|
||||
ticket - time_a
|
||||
) / (time_b - time_a) * accuracy_b
|
||||
results.append(interplate)
|
||||
# return sum(results) / len(results)
|
||||
return np.mean(results), np.std(results)
|
||||
|
||||
|
||||
y_min_s = {
|
||||
("cifar10", "tss"): 91,
|
||||
("cifar10", "sss"): 91,
|
||||
("cifar100", "tss"): 65,
|
||||
("cifar100", "sss"): 65,
|
||||
("ImageNet16-120", "tss"): 36,
|
||||
("ImageNet16-120", "sss"): 40,
|
||||
}
|
||||
|
||||
y_max_s = {
|
||||
("cifar10", "tss"): 94.5,
|
||||
("cifar10", "sss"): 93.5,
|
||||
("cifar100", "tss"): 72.5,
|
||||
("cifar100", "sss"): 70.5,
|
||||
("ImageNet16-120", "tss"): 46,
|
||||
("ImageNet16-120", "sss"): 46,
|
||||
}
|
||||
|
||||
x_axis_s = {
|
||||
("cifar10", "tss"): 1200000,
|
||||
("cifar10", "sss"): 200000,
|
||||
("cifar100", "tss"): 400,
|
||||
("cifar100", "sss"): 400,
|
||||
("ImageNet16-120", "tss"): 1200,
|
||||
("ImageNet16-120", "sss"): 600,
|
||||
}
|
||||
|
||||
name2label = {
|
||||
"cifar10": "CIFAR-10",
|
||||
"cifar100": "CIFAR-100",
|
||||
"ImageNet16-120": "ImageNet-16-120",
|
||||
}
|
||||
|
||||
spaces2latex = {
|
||||
"tss": r"$\mathcal{S}_{t}$",
|
||||
"sss": r"$\mathcal{S}_{s}$",
|
||||
}
|
||||
|
||||
|
||||
# FuncFormatter can be used as a decorator
|
||||
@ticker.FuncFormatter
|
||||
def major_formatter(x, pos):
|
||||
if x == 0:
|
||||
return "0"
|
||||
else:
|
||||
return "{:.2f}e5".format(x / 1e5)
|
||||
|
||||
|
||||
def visualize_curve(api_dict, vis_save_dir):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dpi, width, height = 250, 5000, 2000
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 28, 28
|
||||
|
||||
def sub_plot_fn(ax, search_space, dataset):
|
||||
max_time = x_axis_s[(dataset, search_space)]
|
||||
alg2data = fetch_data(search_space=search_space, dataset=dataset)
|
||||
alg2accuracies = OrderedDict()
|
||||
total_tickets = 200
|
||||
time_tickets = [
|
||||
float(i) / total_tickets * int(max_time) for i in range(total_tickets)
|
||||
]
|
||||
ax.set_xlim(0, x_axis_s[(dataset, search_space)])
|
||||
ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
|
||||
for tick in ax.get_xticklabels():
|
||||
tick.set_rotation(25)
|
||||
tick.set_fontsize(LabelSize - 6)
|
||||
for tick in ax.get_yticklabels():
|
||||
tick.set_fontsize(LabelSize - 6)
|
||||
ax.xaxis.set_major_formatter(major_formatter)
|
||||
for idx, (alg, xdata) in enumerate(alg2data.items()):
|
||||
accuracies = []
|
||||
for ticket in time_tickets:
|
||||
# import pdb; pdb.set_trace()
|
||||
accuracy, accuracy_std = query_performance(
|
||||
api_dict[search_space], xdata["data"], dataset, ticket
|
||||
)
|
||||
accuracies.append(accuracy)
|
||||
# print('{:} plot alg : {:10s}, final accuracy = {:.2f}$\pm${:.2f}'.format(time_string(), alg, accuracy, accuracy_std))
|
||||
print(
|
||||
"{:} plot alg : {:10s} on {:}".format(time_string(), alg, search_space)
|
||||
)
|
||||
alg2accuracies[alg] = accuracies
|
||||
ax.plot(
|
||||
time_tickets,
|
||||
accuracies,
|
||||
c=xdata["color"],
|
||||
linestyle=xdata["linestyle"],
|
||||
label="{:}".format(alg),
|
||||
)
|
||||
ax.set_xlabel("Estimated wall-clock time", fontsize=LabelSize)
|
||||
ax.set_ylabel("Test accuracy", fontsize=LabelSize)
|
||||
ax.set_title(
|
||||
r"Results on {:} over {:}".format(
|
||||
name2label[dataset], spaces2latex[search_space]
|
||||
),
|
||||
fontsize=LabelSize,
|
||||
)
|
||||
ax.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
fig, axs = plt.subplots(1, 2, figsize=figsize)
|
||||
sub_plot_fn(axs[0], "tss", "cifar10")
|
||||
sub_plot_fn(axs[1], "sss", "cifar10")
|
||||
save_path = (vis_save_dir / "full-curve.png").resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
||||
print("{:} save into {:}".format(time_string(), save_path))
|
||||
plt.close("all")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="output/vis-nas-bench/nas-algos-vs-h",
|
||||
help="Folder to save checkpoints and log.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path(args.save_dir)
|
||||
|
||||
api_tss = create(None, "tss", fast_mode=True, verbose=False)
|
||||
api_sss = create(None, "sss", fast_mode=True, verbose=False)
|
||||
visualize_curve(dict(tss=api_tss, sss=api_sss), save_dir)
|
Reference in New Issue
Block a user