add autodl
This commit is contained in:
123
AutoDL-Projects/exps/NATS-Bench/draw-correlations.py
Normal file
123
AutoDL-Projects/exps/NATS-Bench/draw-correlations.py
Normal file
@@ -0,0 +1,123 @@
|
||||
###############################################################
|
||||
# NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021 #
|
||||
###############################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
||||
###############################################################
|
||||
# Usage: python exps/NATS-Bench/draw-correlations.py #
|
||||
###############################################################
|
||||
import os, gc, sys, time, scipy, torch, argparse
|
||||
import numpy as np
|
||||
from typing import List, Text, Dict, Any
|
||||
from shutil import copyfile
|
||||
from collections import defaultdict, OrderedDict
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import matplotlib
|
||||
import seaborn as sns
|
||||
|
||||
matplotlib.use("agg")
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
|
||||
from xautodl.config_utils import dict2config, load_config
|
||||
from xautodl.log_utils import time_string
|
||||
from nats_bench import create
|
||||
|
||||
|
||||
def get_valid_test_acc(api, arch, dataset):
|
||||
is_size_space = api.search_space_name == "size"
|
||||
if dataset == "cifar10":
|
||||
xinfo = api.get_more_info(
|
||||
arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
|
||||
)
|
||||
test_acc = xinfo["test-accuracy"]
|
||||
xinfo = api.get_more_info(
|
||||
arch,
|
||||
dataset="cifar10-valid",
|
||||
hp=90 if is_size_space else 200,
|
||||
is_random=False,
|
||||
)
|
||||
valid_acc = xinfo["valid-accuracy"]
|
||||
else:
|
||||
xinfo = api.get_more_info(
|
||||
arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
|
||||
)
|
||||
valid_acc = xinfo["valid-accuracy"]
|
||||
test_acc = xinfo["test-accuracy"]
|
||||
return (
|
||||
valid_acc,
|
||||
test_acc,
|
||||
"validation = {:.2f}, test = {:.2f}\n".format(valid_acc, test_acc),
|
||||
)
|
||||
|
||||
|
||||
def compute_kendalltau(vectori, vectorj):
|
||||
# indexes = list(range(len(vectori)))
|
||||
# rank_1 = sorted(indexes, key=lambda i: vectori[i])
|
||||
# rank_2 = sorted(indexes, key=lambda i: vectorj[i])
|
||||
# import pdb; pdb.set_trace()
|
||||
coef, p = scipy.stats.kendalltau(vectori, vectorj)
|
||||
return coef
|
||||
|
||||
|
||||
def compute_spearmanr(vectori, vectorj):
|
||||
coef, p = scipy.stats.spearmanr(vectori, vectorj)
|
||||
return coef
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="output/vis-nas-bench/nas-algos",
|
||||
help="Folder to save checkpoints and log.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--search_space",
|
||||
type=str,
|
||||
choices=["tss", "sss"],
|
||||
help="Choose the search space.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path(args.save_dir)
|
||||
|
||||
api = create(None, "tss", fast_mode=True, verbose=False)
|
||||
indexes = list(range(1, 10000, 300))
|
||||
scores_1 = []
|
||||
scores_2 = []
|
||||
for index in indexes:
|
||||
valid_acc, test_acc, _ = get_valid_test_acc(api, index, "cifar10")
|
||||
scores_1.append(valid_acc)
|
||||
scores_2.append(test_acc)
|
||||
correlation = compute_kendalltau(scores_1, scores_2)
|
||||
print(
|
||||
"The kendall tau correlation of {:} samples : {:}".format(
|
||||
len(indexes), correlation
|
||||
)
|
||||
)
|
||||
correlation = compute_spearmanr(scores_1, scores_2)
|
||||
print(
|
||||
"The spearmanr correlation of {:} samples : {:}".format(
|
||||
len(indexes), correlation
|
||||
)
|
||||
)
|
||||
# scores_1 = ['{:.2f}'.format(x) for x in scores_1]
|
||||
# scores_2 = ['{:.2f}'.format(x) for x in scores_2]
|
||||
# print(', '.join(scores_1))
|
||||
# print(', '.join(scores_2))
|
||||
|
||||
dpi, width, height = 250, 1000, 1000
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 14, 14
|
||||
|
||||
fig, ax = plt.subplots(1, 1, figsize=figsize)
|
||||
ax.scatter(scores_1, scores_2, marker="^", s=0.5, c="tab:green", alpha=0.8)
|
||||
|
||||
save_path = "/Users/xuanyidong/Desktop/test-temp-rank.png"
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
||||
plt.close("all")
|
Reference in New Issue
Block a user