3 Commits
0.0.6 ... 0.0.7

Author SHA1 Message Date
Hanzhang Ma
df2f953678 update the csv file output code and add a progress bar in the code 2024-05-16 21:12:13 +02:00
Hanzhang Ma
3740136d7c update the format 2024-05-15 15:06:43 +02:00
Hanzhang ma
e04e01e943 edit read_data.py to accept changeable data 2024-05-13 22:22:03 +02:00
7 changed files with 526 additions and 62 deletions

View File

@@ -21,6 +21,13 @@ class EnergySystem:
self.summer_week_soc = [] self.summer_week_soc = []
self.autumn_week_soc = [] self.autumn_week_soc = []
self.winter_week_soc = [] self.winter_week_soc = []
self.factory_demand = []
self.buy_price_kWh = []
self.sell_price_kWh = []
self.pv_generated_kWh = []
self.grid_need_power_kW = []
self.time = []
self.ess_rest = 0
self.granularity = 4 self.granularity = 4
self.season_step = self.granularity * 24 * 7 * 12 self.season_step = self.granularity * 24 * 7 * 12
self.season_start= self.granularity * 24 * 7 * 2 self.season_start= self.granularity * 24 * 7 * 2
@@ -37,8 +44,10 @@ class EnergySystem:
total_benefit = 0 total_benefit = 0
total_netto_benefit = 0 total_netto_benefit = 0
total_gen = 0 total_gen = 0
net_grid = 0.
for index, row in data.iterrows(): for index, row in data.iterrows():
time = row['time'] time = row['time']
self.time.append(time)
# sunlight_intensity = row['sunlight'] # sunlight_intensity = row['sunlight']
pv_yield = row['PV yield[kW/kWp]'] pv_yield = row['PV yield[kW/kWp]']
factory_demand = row['demand'] factory_demand = row['demand']
@@ -58,6 +67,11 @@ class EnergySystem:
generated_pv_power = self.pv.capacity * pv_yield# 生成的功率,单位 kW generated_pv_power = self.pv.capacity * pv_yield# 生成的功率,单位 kW
generated_pv_energy = generated_pv_power * time_interval * self.pv.loss # 生成的能量,单位 kWh generated_pv_energy = generated_pv_power * time_interval * self.pv.loss # 生成的能量,单位 kWh
self.pv_generated_kWh.append(generated_pv_energy)
self.factory_demand.append(factory_demand)
self.buy_price_kWh.append(electricity_price)
self.sell_price_kWh.append(sell_price)
self.generated += generated_pv_energy self.generated += generated_pv_energy
# pv生成的能量如果比工厂的需求要大 # pv生成的能量如果比工厂的需求要大
if generated_pv_energy >= factory_demand * time_interval: if generated_pv_energy >= factory_demand * time_interval:
@@ -75,6 +89,7 @@ class EnergySystem:
# 节省的能量 = 工厂需求的能量 * 时间段 # 节省的能量 = 工厂需求的能量 * 时间段
# total_energy = factory_demand * time_interval # total_energy = factory_demand * time_interval
saved_energy = factory_demand * time_interval saved_energy = factory_demand * time_interval
self.grid_need_power_kW.append(0)
# pv比工厂的需求小 # pv比工厂的需求小
else: else:
# 从ess中需要的电量 = 工厂需要的电量 - pv中的电量 # 从ess中需要的电量 = 工厂需要的电量 - pv中的电量
@@ -90,6 +105,7 @@ class EnergySystem:
self.ess.storage -= discharging_power self.ess.storage -= discharging_power
# 节省下来的能量 = pv的能量 + 放出来的能量 # 节省下来的能量 = pv的能量 + 放出来的能量
saved_energy = generated_pv_energy + discharging_power * self.ess.loss saved_energy = generated_pv_energy + discharging_power * self.ess.loss
self.grid_need_power_kW.append(0)
else: else:
# 如果存的电量不够 # 如果存的电量不够
# 需要把ess中的所有电量释放出来 # 需要把ess中的所有电量释放出来
@@ -106,6 +122,7 @@ class EnergySystem:
self.ess.storage = 0 self.ess.storage = 0
needed_from_grid = factory_demand * time_interval - saved_energy needed_from_grid = factory_demand * time_interval - saved_energy
net_grid = min(self.grid.capacity * time_interval, needed_from_grid) * self.grid.loss net_grid = min(self.grid.capacity * time_interval, needed_from_grid) * self.grid.loss
self.grid_need_power_kW.append(needed_from_grid * 4)
# grid_energy += net_grid # grid_energy += net_grid
# total_energy += net_grid # total_energy += net_grid
# print(total_energy) # print(total_energy)
@@ -124,6 +141,7 @@ class EnergySystem:
if index in range(week_start, week_end): if index in range(week_start, week_end):
self.spring_week_gen.append(generated_pv_power) self.spring_week_gen.append(generated_pv_power)
self.spring_week_soc.append(self.ess.storage / self.ess.capacity) self.spring_week_soc.append(self.ess.storage / self.ess.capacity)
self.ess_rest = self.ess.storage
# summer # summer
# week_start += self.season_step # week_start += self.season_step
# week_end += self.season_step # week_end += self.season_step

View File

@@ -17,12 +17,12 @@
"pv_capacities":{ "pv_capacities":{
"begin": 0, "begin": 0,
"end": 50000, "end": 50000,
"groups": 11 "groups": 3
}, },
"ess_capacities":{ "ess_capacities":{
"begin": 0, "begin": 0,
"end": 100000, "end": 100000,
"groups": 11 "groups": 3
}, },
"time_interval":{ "time_interval":{
"numerator": 15, "numerator": 15,
@@ -43,5 +43,11 @@
"cost": "Costs of Microgrid system [m-EUR]", "cost": "Costs of Microgrid system [m-EUR]",
"benefit": "Financial Profit Based on Py & Ess Configuration (k-EUR / year)", "benefit": "Financial Profit Based on Py & Ess Configuration (k-EUR / year)",
"roi": "ROI" "roi": "ROI"
},
"data_path": {
"pv_yield": "read_data/Serbia.csv",
"demand": "read_data/factory_power1.csv",
"sell": "read_data/electricity_price_data_sell.csv",
"buy": "read_data/electricity_price_data.csv"
} }
} }

View File

@@ -10,12 +10,12 @@ class pv_config:
def get_cost_per_year(self): def get_cost_per_year(self):
return self.capacity * self.cost_per_kW / self.lifetime return self.capacity * self.cost_per_kW / self.lifetime
class ess_config: class ess_config:
def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power): def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power, storage=0):
self.capacity = capacity self.capacity = capacity
self.cost_per_kW = cost_per_kW self.cost_per_kW = cost_per_kW
self.lifetime = lifetime self.lifetime = lifetime
self.loss = loss self.loss = loss
self.storage = 0 self.storage = storage
self.charge_power = charge_power self.charge_power = charge_power
self.discharge_power = discharge_power self.discharge_power = discharge_power
def get_cost(self): def get_cost(self):

BIN
main.exe

Binary file not shown.

File diff suppressed because one or more lines are too long

187
main.py
View File

@@ -1,5 +1,9 @@
#!/usr/bin/env python #!/usr/bin/env python
# coding: utf-8 # coding: utf-8
# In[83]:
import os import os
import glob import glob
import shutil import shutil
@@ -24,6 +28,9 @@ folder_path = 'plots'
clear_folder_make_ess_pv(folder_path) clear_folder_make_ess_pv(folder_path)
# In[84]:
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import seaborn as sns import seaborn as sns
import numpy as np import numpy as np
@@ -31,6 +38,10 @@ import pandas as pd
from EnergySystem import EnergySystem from EnergySystem import EnergySystem
from config import pv_config, grid_config, ess_config from config import pv_config, grid_config, ess_config
# In[85]:
import json import json
print("Version 0.0.5") print("Version 0.0.5")
@@ -38,8 +49,11 @@ print("Version 0.0.5")
with open('config.json', 'r') as f: with open('config.json', 'r') as f:
js_data = json.load(f) js_data = json.load(f)
time_interval = js_data["time_interval"]["numerator"] / js_data["time_interval"]["denominator"] time_interval = js_data["time_interval"]["numerator"] / js_data["time_interval"]["denominator"]
print(time_interval) # print(time_interval)
pv_loss = js_data["pv"]["loss"] pv_loss = js_data["pv"]["loss"]
pv_cost_per_kW = js_data["pv"]["cost_per_kW"] pv_cost_per_kW = js_data["pv"]["cost_per_kW"]
@@ -102,7 +116,7 @@ ess_capacities = np.linspace(ess_begin, ess_end, ess_groups)
# overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities) # overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# In[ ]: # In[86]:
hour_demand = [] hour_demand = []
@@ -118,6 +132,9 @@ plt.savefig('plots/demand.png')
plt.close() plt.close()
# In[87]:
def draw_results(results, filename, title_benefit, annot_benefit=False, figure_size=(10, 10)): def draw_results(results, filename, title_benefit, annot_benefit=False, figure_size=(10, 10)):
df=results df=results
df = df.astype(float) df = df.astype(float)
@@ -154,7 +171,7 @@ def draw_results(results, filename, title_benefit, annot_benefit=False, figure_s
plt.savefig(filename) plt.savefig(filename)
# In[ ]: # In[88]:
def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, figure_size=(10, 10)): def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, figure_size=(10, 10)):
@@ -167,7 +184,7 @@ def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, fig
if 0 in df.index and 0 in df.columns: if 0 in df.index and 0 in df.columns:
df.loc[0,0] = 100 df.loc[0,0] = 100
df[df > 80] = 100 df[df > 80] = 100
print(df) # print(df)
df = df.astype(float) df = df.astype(float)
df.index = df.index / 1000 df.index = df.index / 1000
@@ -176,7 +193,7 @@ def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, fig
df.columns = df.columns.map(int) df.columns = df.columns.map(int)
min_value = df.min().min() min_value = df.min().min()
max_value = df.max().max() max_value = df.max().max()
print(max_value) # print(max_value)
max_scale = max(abs(min_value), abs(max_value)) max_scale = max(abs(min_value), abs(max_value))
df[df.columns[-1] + 1] = df.iloc[:, -1] df[df.columns[-1] + 1] = df.iloc[:, -1]
@@ -202,6 +219,11 @@ def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, fig
plt.xlabel('ESS Capacity (MWh)') plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)') plt.ylabel('PV Capacity (MW)')
plt.savefig(filename) plt.savefig(filename)
plt.close()
# In[89]:
def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)): def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)):
df = costs df = costs
@@ -232,16 +254,20 @@ def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10
plt.xlabel('ESS Capacity (MWh)') plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)') plt.ylabel('PV Capacity (MW)')
plt.savefig(filename) plt.savefig(filename)
plt.close()
# In[90]:
def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10), days=365, granularity=15): def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10), days=365, granularity=15):
df = overload_cnt df = overload_cnt
print(days, granularity) # print(days, granularity)
coef = 60 / granularity * days * 24 coef = 60 / granularity * days * 24
print(coef) # print(coef)
print(df) # print(df)
df = ( coef - df) / coef df = ( coef - df) / coef
print(df) # print(df)
df = df.astype(float) df = df.astype(float)
df.index = df.index / 1000 df.index = df.index / 1000
@@ -280,12 +306,21 @@ def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure
plt.xlabel('ESS Capacity (MWh)') plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)') plt.ylabel('PV Capacity (MW)')
plt.savefig(filename) plt.savefig(filename)
plt.close()
# In[91]:
def cal_profit(es: EnergySystem, saved_money, days): def cal_profit(es: EnergySystem, saved_money, days):
profit = saved_money - es.ess.get_cost_per_year() / 365 * days - es.pv.get_cost_per_year() / 365 * days profit = saved_money - es.ess.get_cost_per_year() / 365 * days - es.pv.get_cost_per_year() / 365 * days
return profit return profit
def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days):
# In[92]:
def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days, storage=0):
pv = pv_config(capacity=pv_capacity, pv = pv_config(capacity=pv_capacity,
cost_per_kW=pv_cost_per_kW, cost_per_kW=pv_cost_per_kW,
lifetime=pv_lifetime, lifetime=pv_lifetime,
@@ -295,7 +330,8 @@ def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacit
lifetime=ess_lifetime, lifetime=ess_lifetime,
loss=ess_loss, loss=ess_loss,
charge_power=ess_capacity, charge_power=ess_capacity,
discharge_power=ess_capacity) discharge_power=ess_capacity,
storage=storage)
grid = grid_config(capacity=grid_capacity, grid = grid_config(capacity=grid_capacity,
grid_loss=grid_loss, grid_loss=grid_loss,
sell_price= sell_price) sell_price= sell_price)
@@ -306,31 +342,96 @@ def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacit
results = cal_profit(energySystem, benefit, days) results = cal_profit(energySystem, benefit, days)
overload_cnt = energySystem.overload_cnt overload_cnt = energySystem.overload_cnt
costs = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW costs = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW
return (results, overload_cnt, costs, netto_benefit, gen_energy, energySystem.generated) return (results,
overload_cnt,
costs,
netto_benefit,
gen_energy,
energySystem.generated,
energySystem.ess_rest,
energySystem.factory_demand,
energySystem.buy_price_kWh,
energySystem.sell_price_kWh,
energySystem.pv_generated_kWh,
energySystem.grid_need_power_kW,
energySystem.time)
# In[93]:
from tqdm import tqdm
months_results = [] months_results = []
months_costs = [] months_costs = []
months_overload = [] months_overload = []
months_nettos = [] months_nettos = []
months_gen_energy = [] months_gen_energy = []
months_gen_energy2 = [] months_gen_energy2 = []
for index, month_data in enumerate(months_data): months_ess_rest = pd.DataFrame(30, index=pv_capacities, columns= ess_capacities)
months_csv_data = {}
for index, month_data in tqdm(enumerate(months_data), total=len(months_data), position=0, leave= True):
results = pd.DataFrame(index=pv_capacities, columns= ess_capacities) results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities) costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities) overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities) nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
gen_energies = pd.DataFrame(index=pv_capacities, columns= ess_capacities) gen_energies = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
gen_energies2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities) gen_energies2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
for pv_capacity in pv_capacities: factory_demands = {}
buy_prices= {}
sell_prices = {}
pv_generates = {}
grid_need_powers = {}
times = {}
for pv_capacity in tqdm(pv_capacities, total=len(pv_capacities), desc=f'generating pv for month {index + 1}',position=1, leave=False):
factory_demands[pv_capacity] = {}
buy_prices[pv_capacity] = {}
sell_prices[pv_capacity] = {}
pv_generates[pv_capacity] = {}
grid_need_powers[pv_capacity] = {}
times[pv_capacity] = {}
for ess_capacity in ess_capacities: for ess_capacity in ess_capacities:
(result, overload, cost, netto, gen_energy, gen_energy2) = generate_data(pv_capacity=pv_capacity,pv_cost_per_kW=pv_cost_per_kW, pv_lifetime=pv_lifetime, pv_loss=pv_loss, ess_capacity=ess_capacity, ess_cost_per_kW=ess_cost_per_kW, ess_lifetime=ess_lifetime, ess_loss=ess_loss, grid_capacity=grid_capacity, grid_loss=grid_loss, sell_price=sell_price, time_interval=time_interval, data=month_data, days=months_days[index]) (result,
overload,
cost,
netto,
gen_energy,
gen_energy2,
ess_rest,
factory_demand,
buy_price,
sell_price,
pv_generate,
grid_need_power,
time) = generate_data(pv_capacity=pv_capacity,
pv_cost_per_kW=pv_cost_per_kW,
pv_lifetime=pv_lifetime,
pv_loss=pv_loss,
ess_capacity=ess_capacity,
ess_cost_per_kW=ess_cost_per_kW,
ess_lifetime=ess_lifetime,
ess_loss=ess_loss,
grid_capacity=grid_capacity,
grid_loss=grid_loss,
sell_price=sell_price,
time_interval=time_interval,
data=month_data,
days=months_days[index],
storage=months_ess_rest.loc[pv_capacity, ess_capacity])
results.loc[pv_capacity,ess_capacity] = result results.loc[pv_capacity,ess_capacity] = result
overload_cnt.loc[pv_capacity,ess_capacity] = overload overload_cnt.loc[pv_capacity,ess_capacity] = overload
costs.loc[pv_capacity,ess_capacity] = cost costs.loc[pv_capacity,ess_capacity] = cost
nettos.loc[pv_capacity,ess_capacity] = netto nettos.loc[pv_capacity,ess_capacity] = netto
gen_energies.loc[pv_capacity, ess_capacity] = gen_energy gen_energies.loc[pv_capacity, ess_capacity] = gen_energy
gen_energies2.loc[pv_capacity, ess_capacity] = gen_energy2 gen_energies2.loc[pv_capacity, ess_capacity] = gen_energy2
months_ess_rest.loc[pv_capacity, ess_capacity] = ess_rest
factory_demands[pv_capacity][ess_capacity] = factory_demand
buy_prices[pv_capacity][ess_capacity] = buy_price
sell_prices[pv_capacity][ess_capacity] = sell_price
pv_generates[pv_capacity][ess_capacity] = pv_generate
grid_need_powers[pv_capacity][ess_capacity] = grid_need_power
times[pv_capacity][ess_capacity] = time
months_csv_data[index] = {"factory_demand": factory_demands, "buy_price": buy_prices, "sell_price": sell_prices, "pv_generate": pv_generates, "grid_need_power": grid_need_powers, "time": times}
months_results.append(results) months_results.append(results)
months_costs.append(costs) months_costs.append(costs)
months_overload.append(overload_cnt) months_overload.append(overload_cnt)
@@ -349,7 +450,6 @@ for index, month_data in enumerate(months_data):
figure_size=figure_size, figure_size=figure_size,
days=months_days[index], days=months_days[index],
granularity=granularity) granularity=granularity)
annual_result = pd.DataFrame(index=pv_capacities, columns= ess_capacities) annual_result = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities) annual_costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_overload = pd.DataFrame(index=pv_capacities, columns= ess_capacities) annual_overload = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
@@ -358,7 +458,6 @@ annual_gen = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_gen2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities) annual_gen2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# get the yearly results # get the yearly results
for pv_capacity in pv_capacities: for pv_capacity in pv_capacities:
for ess_capacity in ess_capacities: for ess_capacity in ess_capacities:
@@ -399,11 +498,58 @@ draw_overload(overload_cnt=annual_overload,
figure_size=figure_size) figure_size=figure_size)
# In[94]:
def collapse_months_csv_data(months_csv_data, column_name,pv_capacies, ess_capacities):
data = {}
for pv_capacity in pv_capacities:
data[pv_capacity] = {}
for ess_capacity in ess_capacities:
annual_data = []
for index, month_data in enumerate(months_data):
annual_data.extend(months_csv_data[index][column_name][pv_capacity][ess_capacity])
# months_csv_data[index][column_name][pv_capacity][ess_capacity] = months_csv_data[index][column_name][pv_capacity][ess_capacity].tolist()
data[pv_capacity][ess_capacity] = annual_data
return data
# In[102]:
annual_pv_gen = collapse_months_csv_data(months_csv_data, "pv_generate", pv_capacities, ess_capacities)
annual_time = collapse_months_csv_data(months_csv_data, "time", pv_capacities, ess_capacities)
annual_buy_price = collapse_months_csv_data(months_csv_data, "buy_price",pv_capacities, ess_capacities)
annual_sell_price = collapse_months_csv_data(months_csv_data, "sell_price", pv_capacities, ess_capacities)
annual_factory_demand = collapse_months_csv_data(months_csv_data, "factory_demand", pv_capacities, ess_capacities)
annual_grid_need_power = collapse_months_csv_data(months_csv_data, "grid_need_power", pv_capacities, ess_capacities)
from datetime import datetime, timedelta
for pv_capacity in pv_capacities:
for ess_capacity in ess_capacities:
with open(f'data/annual_data-pv-{pv_capacity}-ess-{ess_capacity}.csv', 'w') as f:
f.write("date, time,pv_generate (kW),factory_demand (kW),buy_price (USD/MWh),sell_price (USD/MWh),grid_need_power (kW)\n")
start_date = datetime(2023, 1, 1, 0, 0, 0)
for i in range(len(annual_time[pv_capacity][ess_capacity])):
current_date = start_date + timedelta(hours=i)
formate_date = current_date.strftime("%Y-%m-%d")
f.write(f"{formate_date},{annual_time[pv_capacity][ess_capacity][i]},{int(annual_pv_gen[pv_capacity][ess_capacity][i])},{int(annual_factory_demand[pv_capacity][ess_capacity][i])},{int(annual_buy_price[pv_capacity][ess_capacity][i]*1000)},{int(annual_sell_price[pv_capacity][ess_capacity][i]*1000)},{int(annual_grid_need_power[pv_capacity][ess_capacity][i])} \n")
# In[96]:
def save_data(data, filename): def save_data(data, filename):
data.to_csv(filename+'.csv') data.to_csv(filename+'.csv')
data.to_json(filename + '.json') data.to_json(filename + '.json')
# In[97]:
if not os.path.isdir('data'): if not os.path.isdir('data'):
os.makedirs('data') os.makedirs('data')
@@ -411,8 +557,15 @@ save_data(annual_result, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess
save_data(annual_costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-costs') save_data(annual_costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-costs')
save_data(annual_overload, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt') save_data(annual_overload, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt')
# In[98]:
draw_results(annual_result, 'plots/test.png', 'test', False) draw_results(annual_result, 'plots/test.png', 'test', False)
# In[99]:
draw_roi(annual_costs, annual_nettos, 'plots/annual_roi.png', title_roi, 365, annot_benefit, figure_size) draw_roi(annual_costs, annual_nettos, 'plots/annual_roi.png', title_roi, 365, annot_benefit, figure_size)

View File

@@ -1,17 +1,25 @@
import pandas as pd import pandas as pd
import numpy as np import numpy as np
import csv import csv
import json
pv_yield_file_name = 'read_data/Serbia.csv' with open('config.json', 'r') as f:
js_data = json.load(f)
pv_yield_file_name = js_data["data_path"]["pv_yield"]
print(pv_yield_file_name)
# factory_demand_file_name = 'factory_power1.xlsx' # factory_demand_file_name = 'factory_power1.xlsx'
factory_demand_file_name = 'read_data/factory_power1.csv' factory_demand_file_name = js_data["data_path"]["demand"]
electricity_price_data = 'read_data/electricity_price_data.csv' print(factory_demand_file_name)
electricity_price_data_sell = 'read_data/electricity_price_data_sell.csv' electricity_price_data = js_data["data_path"]["buy"]
print(electricity_price_data)
electricity_price_data_sell = js_data["data_path"]["sell"]
print(electricity_price_data_sell)
pv_df = pd.read_csv(pv_yield_file_name, index_col='Time', usecols=['Time', 'PV yield[kW/kWp]']) pv_df = pd.read_csv(pv_yield_file_name, index_col='Time', usecols=['Time', 'PV yield[kW/kWp]'])
pv_df.index = pd.to_datetime(pv_df.index) pv_df.index = pd.to_datetime(pv_df.index)
df_power = pd.read_csv('factory_power1.csv', index_col='Time', usecols=['Time', 'FactoryPower']) df_power = pd.read_csv(factory_demand_file_name, index_col='Time', usecols=['Time', 'FactoryPower'])
df_power.index = pd.to_datetime(df_power.index) df_power.index = pd.to_datetime(df_power.index)
df_combined = pv_df.join(df_power) df_combined = pv_df.join(df_power)