v2
This commit is contained in:
65
nas_101_api/base_ops.py
Normal file
65
nas_101_api/base_ops.py
Normal file
@@ -0,0 +1,65 @@
|
||||
"""Base operations used by the modules in this search space."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class ConvBnRelu(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0):
|
||||
super(ConvBnRelu, self).__init__()
|
||||
|
||||
self.conv_bn_relu = nn.Sequential(
|
||||
#nn.ReLU(),
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
#nn.ReLU(inplace=True)
|
||||
nn.ReLU()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv_bn_relu(x)
|
||||
|
||||
class Conv3x3BnRelu(nn.Module):
|
||||
"""3x3 convolution with batch norm and ReLU activation."""
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super(Conv3x3BnRelu, self).__init__()
|
||||
|
||||
self.conv3x3 = ConvBnRelu(in_channels, out_channels, 3, 1, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv3x3(x)
|
||||
return x
|
||||
|
||||
class Conv1x1BnRelu(nn.Module):
|
||||
"""1x1 convolution with batch norm and ReLU activation."""
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super(Conv1x1BnRelu, self).__init__()
|
||||
|
||||
self.conv1x1 = ConvBnRelu(in_channels, out_channels, 1, 1, 0)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1x1(x)
|
||||
return x
|
||||
|
||||
class MaxPool3x3(nn.Module):
|
||||
"""3x3 max pool with no subsampling."""
|
||||
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
|
||||
super(MaxPool3x3, self).__init__()
|
||||
|
||||
self.maxpool = nn.MaxPool2d(kernel_size, stride, padding)
|
||||
#self.maxpool = nn.AvgPool2d(kernel_size, stride, padding)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.maxpool(x)
|
||||
return x
|
||||
|
||||
# Commas should not be used in op names
|
||||
OP_MAP = {
|
||||
'conv3x3-bn-relu': Conv3x3BnRelu,
|
||||
'conv1x1-bn-relu': Conv1x1BnRelu,
|
||||
'maxpool3x3': MaxPool3x3
|
||||
}
|
Reference in New Issue
Block a user