Initial commit

This commit is contained in:
jack-willturner
2020-06-03 12:59:01 +01:00
commit 357e877e8d
68 changed files with 7189 additions and 0 deletions

105
models/CifarDenseNet.py Normal file
View File

@@ -0,0 +1,105 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import math, torch
import torch.nn as nn
import torch.nn.functional as F
from .initialization import initialize_resnet
class Bottleneck(nn.Module):
def __init__(self, nChannels, growthRate):
super(Bottleneck, self).__init__()
interChannels = 4*growthRate
self.bn1 = nn.BatchNorm2d(nChannels)
self.conv1 = nn.Conv2d(nChannels, interChannels, kernel_size=1, bias=False)
self.bn2 = nn.BatchNorm2d(interChannels)
self.conv2 = nn.Conv2d(interChannels, growthRate, kernel_size=3, padding=1, bias=False)
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = self.conv2(F.relu(self.bn2(out)))
out = torch.cat((x, out), 1)
return out
class SingleLayer(nn.Module):
def __init__(self, nChannels, growthRate):
super(SingleLayer, self).__init__()
self.bn1 = nn.BatchNorm2d(nChannels)
self.conv1 = nn.Conv2d(nChannels, growthRate, kernel_size=3, padding=1, bias=False)
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = torch.cat((x, out), 1)
return out
class Transition(nn.Module):
def __init__(self, nChannels, nOutChannels):
super(Transition, self).__init__()
self.bn1 = nn.BatchNorm2d(nChannels)
self.conv1 = nn.Conv2d(nChannels, nOutChannels, kernel_size=1, bias=False)
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = F.avg_pool2d(out, 2)
return out
class DenseNet(nn.Module):
def __init__(self, growthRate, depth, reduction, nClasses, bottleneck):
super(DenseNet, self).__init__()
if bottleneck: nDenseBlocks = int( (depth-4) / 6 )
else : nDenseBlocks = int( (depth-4) / 3 )
self.message = 'CifarDenseNet : block : {:}, depth : {:}, reduction : {:}, growth-rate = {:}, class = {:}'.format('bottleneck' if bottleneck else 'basic', depth, reduction, growthRate, nClasses)
nChannels = 2*growthRate
self.conv1 = nn.Conv2d(3, nChannels, kernel_size=3, padding=1, bias=False)
self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
nChannels += nDenseBlocks*growthRate
nOutChannels = int(math.floor(nChannels*reduction))
self.trans1 = Transition(nChannels, nOutChannels)
nChannels = nOutChannels
self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
nChannels += nDenseBlocks*growthRate
nOutChannels = int(math.floor(nChannels*reduction))
self.trans2 = Transition(nChannels, nOutChannels)
nChannels = nOutChannels
self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
nChannels += nDenseBlocks*growthRate
self.act = nn.Sequential(
nn.BatchNorm2d(nChannels), nn.ReLU(inplace=True),
nn.AvgPool2d(8))
self.fc = nn.Linear(nChannels, nClasses)
self.apply(initialize_resnet)
def get_message(self):
return self.message
def _make_dense(self, nChannels, growthRate, nDenseBlocks, bottleneck):
layers = []
for i in range(int(nDenseBlocks)):
if bottleneck:
layers.append(Bottleneck(nChannels, growthRate))
else:
layers.append(SingleLayer(nChannels, growthRate))
nChannels += growthRate
return nn.Sequential(*layers)
def forward(self, inputs):
out = self.conv1( inputs )
out = self.trans1(self.dense1(out))
out = self.trans2(self.dense2(out))
out = self.dense3(out)
features = self.act(out)
features = features.view(features.size(0), -1)
out = self.fc(features)
return features, out

157
models/CifarResNet.py Normal file
View File

@@ -0,0 +1,157 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from .initialization import initialize_resnet
from .SharedUtils import additive_func
class Downsample(nn.Module):
def __init__(self, nIn, nOut, stride):
super(Downsample, self).__init__()
assert stride == 2 and nOut == 2*nIn, 'stride:{} IO:{},{}'.format(stride, nIn, nOut)
self.in_dim = nIn
self.out_dim = nOut
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
self.conv = nn.Conv2d(nIn, nOut, kernel_size=1, stride=1, padding=0, bias=False)
def forward(self, x):
x = self.avg(x)
out = self.conv(x)
return out
class ConvBNReLU(nn.Module):
def __init__(self, nIn, nOut, kernel, stride, padding, bias, relu):
super(ConvBNReLU, self).__init__()
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, bias=bias)
self.bn = nn.BatchNorm2d(nOut)
if relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
self.out_dim = nOut
self.num_conv = 1
def forward(self, x):
conv = self.conv( x )
bn = self.bn( conv )
if self.relu: return self.relu( bn )
else : return bn
class ResNetBasicblock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, True)
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, False)
if stride == 2:
self.downsample = Downsample(inplanes, planes, stride)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, False)
else:
self.downsample = None
self.out_dim = planes
self.num_conv = 2
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = additive_func(residual, basicblock)
return F.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, True)
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, True)
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, False)
if stride == 2:
self.downsample = Downsample(inplanes, planes*self.expansion, stride)
elif inplanes != planes*self.expansion:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, False)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.num_conv = 3
def forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = additive_func(residual, bottleneck)
return F.relu(out, inplace=True)
class CifarResNet(nn.Module):
def __init__(self, block_name, depth, num_classes, zero_init_residual):
super(CifarResNet, self).__init__()
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
self.message = 'CifarResNet : Block : {:}, Depth : {:}, Layers for each block : {:}'.format(block_name, depth, layer_blocks)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, True) ] )
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
def get_message(self):
return self.message
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

94
models/CifarWideResNet.py Normal file
View File

@@ -0,0 +1,94 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from .initialization import initialize_resnet
class WideBasicblock(nn.Module):
def __init__(self, inplanes, planes, stride, dropout=False):
super(WideBasicblock, self).__init__()
self.bn_a = nn.BatchNorm2d(inplanes)
self.conv_a = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn_b = nn.BatchNorm2d(planes)
if dropout:
self.dropout = nn.Dropout2d(p=0.5, inplace=True)
else:
self.dropout = None
self.conv_b = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
if inplanes != planes:
self.downsample = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, padding=0, bias=False)
else:
self.downsample = None
def forward(self, x):
basicblock = self.bn_a(x)
basicblock = F.relu(basicblock)
basicblock = self.conv_a(basicblock)
basicblock = self.bn_b(basicblock)
basicblock = F.relu(basicblock)
if self.dropout is not None:
basicblock = self.dropout(basicblock)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
x = self.downsample(x)
return x + basicblock
class CifarWideResNet(nn.Module):
"""
ResNet optimized for the Cifar dataset, as specified in
https://arxiv.org/abs/1512.03385.pdf
"""
def __init__(self, depth, widen_factor, num_classes, dropout):
super(CifarWideResNet, self).__init__()
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
assert (depth - 4) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 4) // 6
print ('CifarPreResNet : Depth : {} , Layers for each block : {}'.format(depth, layer_blocks))
self.num_classes = num_classes
self.dropout = dropout
self.conv_3x3 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.message = 'Wide ResNet : depth={:}, widen_factor={:}, class={:}'.format(depth, widen_factor, num_classes)
self.inplanes = 16
self.stage_1 = self._make_layer(WideBasicblock, 16*widen_factor, layer_blocks, 1)
self.stage_2 = self._make_layer(WideBasicblock, 32*widen_factor, layer_blocks, 2)
self.stage_3 = self._make_layer(WideBasicblock, 64*widen_factor, layer_blocks, 2)
self.lastact = nn.Sequential(nn.BatchNorm2d(64*widen_factor), nn.ReLU(inplace=True))
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(64*widen_factor, num_classes)
self.apply(initialize_resnet)
def get_message(self):
return self.message
def _make_layer(self, block, planes, blocks, stride):
layers = []
layers.append(block(self.inplanes, planes, stride, self.dropout))
self.inplanes = planes
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, 1, self.dropout))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv_3x3(x)
x = self.stage_1(x)
x = self.stage_2(x)
x = self.stage_3(x)
x = self.lastact(x)
x = self.avgpool(x)
features = x.view(x.size(0), -1)
outs = self.classifier(features)
return features, outs

View File

@@ -0,0 +1,101 @@
# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
from torch import nn
from .initialization import initialize_resnet
class ConvBNReLU(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
super(ConvBNReLU, self).__init__()
padding = (kernel_size - 1) // 2
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False)
self.bn = nn.BatchNorm2d(out_planes)
self.relu = nn.ReLU6(inplace=True)
def forward(self, x):
out = self.conv( x )
out = self.bn ( out )
out = self.relu( out )
return out
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self, num_classes, width_mult, input_channel, last_channel, block_name, dropout):
super(MobileNetV2, self).__init__()
if block_name == 'InvertedResidual':
block = InvertedResidual
else:
raise ValueError('invalid block name : {:}'.format(block_name))
inverted_residual_setting = [
# t, c, n, s
[1, 16 , 1, 1],
[6, 24 , 2, 2],
[6, 32 , 3, 2],
[6, 64 , 4, 2],
[6, 96 , 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
# building first layer
input_channel = int(input_channel * width_mult)
self.last_channel = int(last_channel * max(1.0, width_mult))
features = [ConvBNReLU(3, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = int(c * width_mult)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
# building last several layers
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
# make it nn.Sequential
self.features = nn.Sequential(*features)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(dropout),
nn.Linear(self.last_channel, num_classes),
)
self.message = 'MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}'.format(width_mult, input_channel, last_channel, block_name, dropout)
# weight initialization
self.apply( initialize_resnet )
def get_message(self):
return self.message
def forward(self, inputs):
features = self.features(inputs)
vectors = features.mean([2, 3])
predicts = self.classifier(vectors)
return features, predicts

172
models/ImageNet_ResNet.py Normal file
View File

@@ -0,0 +1,172 @@
# Deep Residual Learning for Image Recognition, CVPR 2016
import torch.nn as nn
from .initialization import initialize_resnet
def conv3x3(in_planes, out_planes, stride=1, groups=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64):
super(BasicBlock, self).__init__()
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64):
super(Bottleneck, self).__init__()
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = nn.BatchNorm2d(width)
self.conv2 = conv3x3(width, width, stride, groups)
self.bn2 = nn.BatchNorm2d(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block_name, layers, deep_stem, num_classes, zero_init_residual, groups, width_per_group):
super(ResNet, self).__init__()
#planes = [int(width_per_group * groups * 2 ** i) for i in range(4)]
if block_name == 'BasicBlock' : block= BasicBlock
elif block_name == 'Bottleneck': block= Bottleneck
else : raise ValueError('invalid block-name : {:}'.format(block_name))
if not deep_stem:
self.conv = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64), nn.ReLU(inplace=True))
else:
self.conv = nn.Sequential(
nn.Conv2d( 3, 32, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(32), nn.ReLU(inplace=True),
nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(32), nn.ReLU(inplace=True),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64), nn.ReLU(inplace=True))
self.inplanes = 64
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64 , layers[0], stride=1, groups=groups, base_width=width_per_group)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, groups=groups, base_width=width_per_group)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, groups=groups, base_width=width_per_group)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, groups=groups, base_width=width_per_group)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
self.message = 'block = {:}, layers = {:}, deep_stem = {:}, num_classes = {:}'.format(block, layers, deep_stem, num_classes)
self.apply( initialize_resnet )
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride, groups, base_width):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
if stride == 2:
downsample = nn.Sequential(
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
conv1x1(self.inplanes, planes * block.expansion, 1),
nn.BatchNorm2d(planes * block.expansion),
)
elif stride == 1:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
else: raise ValueError('invalid stride [{:}] for downsample'.format(stride))
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, groups, base_width))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, 1, None, groups, base_width))
return nn.Sequential(*layers)
def get_message(self):
return self.message
def forward(self, x):
x = self.conv(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.fc(features)
return features, logits

34
models/SharedUtils.py Normal file
View File

@@ -0,0 +1,34 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import torch
import torch.nn as nn
def additive_func(A, B):
assert A.dim() == B.dim() and A.size(0) == B.size(0), '{:} vs {:}'.format(A.size(), B.size())
C = min(A.size(1), B.size(1))
if A.size(1) == B.size(1):
return A + B
elif A.size(1) < B.size(1):
out = B.clone()
out[:,:C] += A
return out
else:
out = A.clone()
out[:,:C] += B
return out
def change_key(key, value):
def func(m):
if hasattr(m, key):
setattr(m, key, value)
return func
def parse_channel_info(xstring):
blocks = xstring.split(' ')
blocks = [x.split('-') for x in blocks]
blocks = [[int(_) for _ in x] for x in blocks]
return blocks

185
models/__init__.py Normal file
View File

@@ -0,0 +1,185 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
from os import path as osp
from typing import List, Text
import torch
__all__ = ['change_key', 'get_cell_based_tiny_net', 'get_search_spaces', 'get_cifar_models', 'get_imagenet_models', \
'obtain_model', 'obtain_search_model', 'load_net_from_checkpoint', \
'CellStructure', 'CellArchitectures'
]
# useful modules
from config_utils import dict2config
from .SharedUtils import change_key
from .cell_searchs import CellStructure, CellArchitectures
# Cell-based NAS Models
def get_cell_based_tiny_net(config):
if isinstance(config, dict): config = dict2config(config, None) # to support the argument being a dict
super_type = getattr(config, 'super_type', 'basic')
group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS', 'RANDOM']
if super_type == 'basic' and config.name in group_names:
from .cell_searchs import nas201_super_nets as nas_super_nets
try:
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats)
except:
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space)
elif super_type == 'nasnet-super':
from .cell_searchs import nasnet_super_nets as nas_super_nets
return nas_super_nets[config.name](config.C, config.N, config.steps, config.multiplier, \
config.stem_multiplier, config.num_classes, config.space, config.affine, config.track_running_stats)
elif config.name == 'infer.tiny':
from .cell_infers import TinyNetwork
if hasattr(config, 'genotype'):
genotype = config.genotype
elif hasattr(config, 'arch_str'):
genotype = CellStructure.str2structure(config.arch_str)
else: raise ValueError('Can not find genotype from this config : {:}'.format(config))
return TinyNetwork(config.C, config.N, genotype, config.num_classes)
elif config.name == 'infer.shape.tiny':
from .shape_infers import DynamicShapeTinyNet
if isinstance(config.channels, str):
channels = tuple([int(x) for x in config.channels.split(':')])
else: channels = config.channels
genotype = CellStructure.str2structure(config.genotype)
return DynamicShapeTinyNet(channels, genotype, config.num_classes)
elif config.name == 'infer.nasnet-cifar':
from .cell_infers import NASNetonCIFAR
raise NotImplementedError
else:
raise ValueError('invalid network name : {:}'.format(config.name))
# obtain the search space, i.e., a dict mapping the operation name into a python-function for this op
def get_search_spaces(xtype, name) -> List[Text]:
if xtype == 'cell':
from .cell_operations import SearchSpaceNames
assert name in SearchSpaceNames, 'invalid name [{:}] in {:}'.format(name, SearchSpaceNames.keys())
return SearchSpaceNames[name]
else:
raise ValueError('invalid search-space type is {:}'.format(xtype))
def get_cifar_models(config, extra_path=None):
super_type = getattr(config, 'super_type', 'basic')
if super_type == 'basic':
from .CifarResNet import CifarResNet
from .CifarDenseNet import DenseNet
from .CifarWideResNet import CifarWideResNet
if config.arch == 'resnet':
return CifarResNet(config.module, config.depth, config.class_num, config.zero_init_residual)
elif config.arch == 'densenet':
return DenseNet(config.growthRate, config.depth, config.reduction, config.class_num, config.bottleneck)
elif config.arch == 'wideresnet':
return CifarWideResNet(config.depth, config.wide_factor, config.class_num, config.dropout)
else:
raise ValueError('invalid module type : {:}'.format(config.arch))
elif super_type.startswith('infer'):
from .shape_infers import InferWidthCifarResNet
from .shape_infers import InferDepthCifarResNet
from .shape_infers import InferCifarResNet
from .cell_infers import NASNetonCIFAR
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
infer_mode = super_type.split('-')[1]
if infer_mode == 'width':
return InferWidthCifarResNet(config.module, config.depth, config.xchannels, config.class_num, config.zero_init_residual)
elif infer_mode == 'depth':
return InferDepthCifarResNet(config.module, config.depth, config.xblocks, config.class_num, config.zero_init_residual)
elif infer_mode == 'shape':
return InferCifarResNet(config.module, config.depth, config.xblocks, config.xchannels, config.class_num, config.zero_init_residual)
elif infer_mode == 'nasnet.cifar':
genotype = config.genotype
if extra_path is not None: # reload genotype by extra_path
if not osp.isfile(extra_path): raise ValueError('invalid extra_path : {:}'.format(extra_path))
xdata = torch.load(extra_path)
current_epoch = xdata['epoch']
genotype = xdata['genotypes'][current_epoch-1]
C = config.C if hasattr(config, 'C') else config.ichannel
N = config.N if hasattr(config, 'N') else config.layers
return NASNetonCIFAR(C, N, config.stem_multi, config.class_num, genotype, config.auxiliary)
else:
raise ValueError('invalid infer-mode : {:}'.format(infer_mode))
else:
raise ValueError('invalid super-type : {:}'.format(super_type))
def get_imagenet_models(config):
super_type = getattr(config, 'super_type', 'basic')
if super_type == 'basic':
from .ImageNet_ResNet import ResNet
from .ImageNet_MobileNetV2 import MobileNetV2
if config.arch == 'resnet':
return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group)
elif config.arch == 'mobilenet_v2':
return MobileNetV2(config.class_num, config.width_multi, config.input_channel, config.last_channel, 'InvertedResidual', config.dropout)
else:
raise ValueError('invalid arch : {:}'.format( config.arch ))
elif super_type.startswith('infer'): # NAS searched architecture
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
infer_mode = super_type.split('-')[1]
if infer_mode == 'shape':
from .shape_infers import InferImagenetResNet
from .shape_infers import InferMobileNetV2
if config.arch == 'resnet':
return InferImagenetResNet(config.block_name, config.layers, config.xblocks, config.xchannels, config.deep_stem, config.class_num, config.zero_init_residual)
elif config.arch == "MobileNetV2":
return InferMobileNetV2(config.class_num, config.xchannels, config.xblocks, config.dropout)
else:
raise ValueError('invalid arch-mode : {:}'.format(config.arch))
else:
raise ValueError('invalid infer-mode : {:}'.format(infer_mode))
else:
raise ValueError('invalid super-type : {:}'.format(super_type))
# Try to obtain the network by config.
def obtain_model(config, extra_path=None):
if config.dataset == 'cifar':
return get_cifar_models(config, extra_path)
elif config.dataset == 'imagenet':
return get_imagenet_models(config)
else:
raise ValueError('invalid dataset in the model config : {:}'.format(config))
def obtain_search_model(config):
if config.dataset == 'cifar':
if config.arch == 'resnet':
from .shape_searchs import SearchWidthCifarResNet
from .shape_searchs import SearchDepthCifarResNet
from .shape_searchs import SearchShapeCifarResNet
if config.search_mode == 'width':
return SearchWidthCifarResNet(config.module, config.depth, config.class_num)
elif config.search_mode == 'depth':
return SearchDepthCifarResNet(config.module, config.depth, config.class_num)
elif config.search_mode == 'shape':
return SearchShapeCifarResNet(config.module, config.depth, config.class_num)
else: raise ValueError('invalid search mode : {:}'.format(config.search_mode))
elif config.arch == 'simres':
from .shape_searchs import SearchWidthSimResNet
if config.search_mode == 'width':
return SearchWidthSimResNet(config.depth, config.class_num)
else: raise ValueError('invalid search mode : {:}'.format(config.search_mode))
else:
raise ValueError('invalid arch : {:} for dataset [{:}]'.format(config.arch, config.dataset))
elif config.dataset == 'imagenet':
from .shape_searchs import SearchShapeImagenetResNet
assert config.search_mode == 'shape', 'invalid search-mode : {:}'.format( config.search_mode )
if config.arch == 'resnet':
return SearchShapeImagenetResNet(config.block_name, config.layers, config.deep_stem, config.class_num)
else:
raise ValueError('invalid model config : {:}'.format(config))
else:
raise ValueError('invalid dataset in the model config : {:}'.format(config))
def load_net_from_checkpoint(checkpoint):
assert osp.isfile(checkpoint), 'checkpoint {:} does not exist'.format(checkpoint)
checkpoint = torch.load(checkpoint)
model_config = dict2config(checkpoint['model-config'], None)
model = obtain_model(model_config)
model.load_state_dict(checkpoint['base-model'])
return model

View File

@@ -0,0 +1,5 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
from .tiny_network import TinyNetwork
from .nasnet_cifar import NASNetonCIFAR

120
models/cell_infers/cells.py Normal file
View File

@@ -0,0 +1,120 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import OPS
# Cell for NAS-Bench-201
class InferCell(nn.Module):
def __init__(self, genotype, C_in, C_out, stride):
super(InferCell, self).__init__()
self.layers = nn.ModuleList()
self.node_IN = []
self.node_IX = []
self.genotype = deepcopy(genotype)
for i in range(1, len(genotype)):
node_info = genotype[i-1]
cur_index = []
cur_innod = []
for (op_name, op_in) in node_info:
if op_in == 0:
layer = OPS[op_name](C_in , C_out, stride, True, True)
else:
layer = OPS[op_name](C_out, C_out, 1, True, True)
cur_index.append( len(self.layers) )
cur_innod.append( op_in )
self.layers.append( layer )
self.node_IX.append( cur_index )
self.node_IN.append( cur_innod )
self.nodes = len(genotype)
self.in_dim = C_in
self.out_dim = C_out
def extra_repr(self):
string = 'info :: nodes={nodes}, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
laystr = []
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
y = ['I{:}-L{:}'.format(_ii, _il) for _il, _ii in zip(node_layers, node_innods)]
x = '{:}<-({:})'.format(i+1, ','.join(y))
laystr.append( x )
return string + ', [{:}]'.format( ' | '.join(laystr) ) + ', {:}'.format(self.genotype.tostr())
def forward(self, inputs):
nodes = [inputs]
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
node_feature = sum( self.layers[_il](nodes[_ii]) for _il, _ii in zip(node_layers, node_innods) )
nodes.append( node_feature )
return nodes[-1]
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
class NASNetInferCell(nn.Module):
def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats):
super(NASNetInferCell, self).__init__()
self.reduction = reduction
if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats)
else : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats)
self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats)
if not reduction:
nodes, concats = genotype['normal'], genotype['normal_concat']
else:
nodes, concats = genotype['reduce'], genotype['reduce_concat']
self._multiplier = len(concats)
self._concats = concats
self._steps = len(nodes)
self._nodes = nodes
self.edges = nn.ModuleDict()
for i, node in enumerate(nodes):
for in_node in node:
name, j = in_node[0], in_node[1]
stride = 2 if reduction and j < 2 else 1
node_str = '{:}<-{:}'.format(i+2, j)
self.edges[node_str] = OPS[name](C, C, stride, affine, track_running_stats)
# [TODO] to support drop_prob in this function..
def forward(self, s0, s1, unused_drop_prob):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i, node in enumerate(self._nodes):
clist = []
for in_node in node:
name, j = in_node[0], in_node[1]
node_str = '{:}<-{:}'.format(i+2, j)
op = self.edges[ node_str ]
clist.append( op(states[j]) )
states.append( sum(clist) )
return torch.cat([states[x] for x in self._concats], dim=1)
class AuxiliaryHeadCIFAR(nn.Module):
def __init__(self, C, num_classes):
"""assuming input size 8x8"""
super(AuxiliaryHeadCIFAR, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True)
)
self.classifier = nn.Linear(768, num_classes)
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0),-1))
return x

View File

@@ -0,0 +1,71 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import torch
import torch.nn as nn
from copy import deepcopy
from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR
# The macro structure is based on NASNet
class NASNetonCIFAR(nn.Module):
def __init__(self, C, N, stem_multiplier, num_classes, genotype, auxiliary, affine=True, track_running_stats=True):
super(NASNetonCIFAR, self).__init__()
self._C = C
self._layerN = N
self.stem = nn.Sequential(
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C*stem_multiplier))
# config for each layer
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
self.auxiliary_index = None
self.auxiliary_head = None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
cell = InferCell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
self.cells.append( cell )
C_prev_prev, C_prev, reduction_prev = C_prev, cell._multiplier*C_curr, reduction
if reduction and C_curr == C*4 and auxiliary:
self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes)
self.auxiliary_index = index
self._Layer = len(self.cells)
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.drop_path_prob = -1
def update_drop_path(self, drop_path_prob):
self.drop_path_prob = drop_path_prob
def auxiliary_param(self):
if self.auxiliary_head is None: return []
else: return list( self.auxiliary_head.parameters() )
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def forward(self, inputs):
stem_feature, logits_aux = self.stem(inputs), None
cell_results = [stem_feature, stem_feature]
for i, cell in enumerate(self.cells):
cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob)
cell_results.append( cell_feature )
if self.auxiliary_index is not None and i == self.auxiliary_index and self.training:
logits_aux = self.auxiliary_head( cell_results[-1] )
out = self.lastact(cell_results[-1])
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
if logits_aux is None: return out, logits
else: return out, [logits, logits_aux]

View File

@@ -0,0 +1,58 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import torch.nn as nn
from ..cell_operations import ResNetBasicblock
from .cells import InferCell
# The macro structure for architectures in NAS-Bench-201
class TinyNetwork(nn.Module):
def __init__(self, C, N, genotype, num_classes):
super(TinyNetwork, self).__init__()
self._C = C
self._layerN = N
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev = C
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2, True)
else:
cell = InferCell(genotype, C_prev, C_curr, 1)
self.cells.append( cell )
C_prev = cell.out_dim
self._Layer= len(self.cells)
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def forward(self, inputs):
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

297
models/cell_operations.py Normal file
View File

@@ -0,0 +1,297 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import torch
import torch.nn as nn
__all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames']
OPS = {
'none' : lambda C_in, C_out, stride, affine, track_running_stats: Zero(C_in, C_out, stride),
'avg_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'avg', affine, track_running_stats),
'max_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'max', affine, track_running_stats),
'nor_conv_7x7' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1), affine, track_running_stats),
'nor_conv_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats),
'nor_conv_1x1' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1), affine, track_running_stats),
'dua_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats),
'dua_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (5,5), (stride,stride), (2,2), (1,1), affine, track_running_stats),
'dil_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (3,3), (stride,stride), (2,2), (2,2), affine, track_running_stats),
'dil_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (5,5), (stride,stride), (4,4), (2,2), affine, track_running_stats),
'skip_connect' : lambda C_in, C_out, stride, affine, track_running_stats: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats),
}
CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3']
NAS_BENCH_201 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
DARTS_SPACE = ['none', 'skip_connect', 'dua_sepc_3x3', 'dua_sepc_5x5', 'dil_sepc_3x3', 'dil_sepc_5x5', 'avg_pool_3x3', 'max_pool_3x3']
SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK,
'nas-bench-201': NAS_BENCH_201,
'darts' : DARTS_SPACE}
class ReLUConvBN(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
super(ReLUConvBN, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False),
nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats)
)
def forward(self, x):
return self.op(x)
class SepConv(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
super(SepConv, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats),
)
def forward(self, x):
return self.op(x)
class DualSepConv(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
super(DualSepConv, self).__init__()
self.op_a = SepConv(C_in, C_in , kernel_size, stride, padding, dilation, affine, track_running_stats)
self.op_b = SepConv(C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats)
def forward(self, x):
x = self.op_a(x)
x = self.op_b(x)
return x
class ResNetBasicblock(nn.Module):
def __init__(self, inplanes, planes, stride, affine=True):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine)
self.conv_b = ReLUConvBN( planes, planes, 3, 1, 1, 1, affine)
if stride == 2:
self.downsample = nn.Sequential(
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False))
elif inplanes != planes:
self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine)
else:
self.downsample = None
self.in_dim = inplanes
self.out_dim = planes
self.stride = stride
self.num_conv = 2
def extra_repr(self):
string = '{name}(inC={in_dim}, outC={out_dim}, stride={stride})'.format(name=self.__class__.__name__, **self.__dict__)
return string
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
return residual + basicblock
class POOLING(nn.Module):
def __init__(self, C_in, C_out, stride, mode, affine=True, track_running_stats=True):
super(POOLING, self).__init__()
if C_in == C_out:
self.preprocess = None
else:
self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, 1, affine, track_running_stats)
if mode == 'avg' : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False)
elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1)
else : raise ValueError('Invalid mode={:} in POOLING'.format(mode))
def forward(self, inputs):
if self.preprocess: x = self.preprocess(inputs)
else : x = inputs
return self.op(x)
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
class Zero(nn.Module):
def __init__(self, C_in, C_out, stride):
super(Zero, self).__init__()
self.C_in = C_in
self.C_out = C_out
self.stride = stride
self.is_zero = True
def forward(self, x):
if self.C_in == self.C_out:
if self.stride == 1: return x.mul(0.)
else : return x[:,:,::self.stride,::self.stride].mul(0.)
else:
shape = list(x.shape)
shape[1] = self.C_out
zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device)
return zeros
def extra_repr(self):
return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)
class FactorizedReduce(nn.Module):
def __init__(self, C_in, C_out, stride, affine, track_running_stats):
super(FactorizedReduce, self).__init__()
self.stride = stride
self.C_in = C_in
self.C_out = C_out
self.relu = nn.ReLU(inplace=False)
if stride == 2:
#assert C_out % 2 == 0, 'C_out : {:}'.format(C_out)
C_outs = [C_out // 2, C_out - C_out // 2]
self.convs = nn.ModuleList()
for i in range(2):
self.convs.append( nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False) )
self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
elif stride == 1:
self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=False)
else:
raise ValueError('Invalid stride : {:}'.format(stride))
self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats)
def forward(self, x):
if self.stride == 2:
x = self.relu(x)
y = self.pad(x)
out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1)
else:
out = self.conv(x)
out = self.bn(out)
return out
def extra_repr(self):
return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)
# Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019
class PartAwareOp(nn.Module):
def __init__(self, C_in, C_out, stride, part=4):
super().__init__()
self.part = 4
self.hidden = C_in // 3
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.local_conv_list = nn.ModuleList()
for i in range(self.part):
self.local_conv_list.append(
nn.Sequential(nn.ReLU(), nn.Conv2d(C_in, self.hidden, 1), nn.BatchNorm2d(self.hidden, affine=True))
)
self.W_K = nn.Linear(self.hidden, self.hidden)
self.W_Q = nn.Linear(self.hidden, self.hidden)
if stride == 2 : self.last = FactorizedReduce(C_in + self.hidden, C_out, 2)
elif stride == 1: self.last = FactorizedReduce(C_in + self.hidden, C_out, 1)
else: raise ValueError('Invalid Stride : {:}'.format(stride))
def forward(self, x):
batch, C, H, W = x.size()
assert H >= self.part, 'input size too small : {:} vs {:}'.format(x.shape, self.part)
IHs = [0]
for i in range(self.part): IHs.append( min(H, int((i+1)*(float(H)/self.part))) )
local_feat_list = []
for i in range(self.part):
feature = x[:, :, IHs[i]:IHs[i+1], :]
xfeax = self.avg_pool(feature)
xfea = self.local_conv_list[i]( xfeax )
local_feat_list.append( xfea )
part_feature = torch.cat(local_feat_list, dim=2).view(batch, -1, self.part)
part_feature = part_feature.transpose(1,2).contiguous()
part_K = self.W_K(part_feature)
part_Q = self.W_Q(part_feature).transpose(1,2).contiguous()
weight_att = torch.bmm(part_K, part_Q)
attention = torch.softmax(weight_att, dim=2)
aggreateF = torch.bmm(attention, part_feature).transpose(1,2).contiguous()
features = []
for i in range(self.part):
feature = aggreateF[:, :, i:i+1].expand(batch, self.hidden, IHs[i+1]-IHs[i])
feature = feature.view(batch, self.hidden, IHs[i+1]-IHs[i], 1)
features.append( feature )
features = torch.cat(features, dim=2).expand(batch, self.hidden, H, W)
final_fea = torch.cat((x,features), dim=1)
outputs = self.last( final_fea )
return outputs
# Searching for A Robust Neural Architecture in Four GPU Hours
class GDAS_Reduction_Cell(nn.Module):
def __init__(self, C_prev_prev, C_prev, C, reduction_prev, multiplier, affine, track_running_stats):
super(GDAS_Reduction_Cell, self).__init__()
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, 2, affine, track_running_stats)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, 1, affine, track_running_stats)
self.multiplier = multiplier
self.reduction = True
self.ops1 = nn.ModuleList(
[nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False),
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False),
nn.BatchNorm2d(C, affine=True),
nn.ReLU(inplace=False),
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(C, affine=True)),
nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False),
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False),
nn.BatchNorm2d(C, affine=True),
nn.ReLU(inplace=False),
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(C, affine=True))])
self.ops2 = nn.ModuleList(
[nn.Sequential(
nn.MaxPool2d(3, stride=1, padding=1),
nn.BatchNorm2d(C, affine=True)),
nn.Sequential(
nn.MaxPool2d(3, stride=2, padding=1),
nn.BatchNorm2d(C, affine=True))])
def forward(self, s0, s1, drop_prob = -1):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
X0 = self.ops1[0] (s0)
X1 = self.ops1[1] (s1)
if self.training and drop_prob > 0.:
X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob)
#X2 = self.ops2[0] (X0+X1)
X2 = self.ops2[0] (s0)
X3 = self.ops2[1] (s1)
if self.training and drop_prob > 0.:
X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob)
return torch.cat([X0, X1, X2, X3], dim=1)

View File

@@ -0,0 +1,24 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
# The macro structure is defined in NAS-Bench-201
from .search_model_darts import TinyNetworkDarts
from .search_model_gdas import TinyNetworkGDAS
from .search_model_setn import TinyNetworkSETN
from .search_model_enas import TinyNetworkENAS
from .search_model_random import TinyNetworkRANDOM
from .genotypes import Structure as CellStructure, architectures as CellArchitectures
# NASNet-based macro structure
from .search_model_gdas_nasnet import NASNetworkGDAS
from .search_model_darts_nasnet import NASNetworkDARTS
nas201_super_nets = {'DARTS-V1': TinyNetworkDarts,
"DARTS-V2": TinyNetworkDarts,
"GDAS": TinyNetworkGDAS,
"SETN": TinyNetworkSETN,
"ENAS": TinyNetworkENAS,
"RANDOM": TinyNetworkRANDOM}
nasnet_super_nets = {"GDAS": NASNetworkGDAS,
"DARTS": NASNetworkDARTS}

View File

@@ -0,0 +1,12 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import torch
from search_model_enas_utils import Controller
def main():
controller = Controller(6, 4)
predictions = controller()
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,199 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
from copy import deepcopy
def get_combination(space, num):
combs = []
for i in range(num):
if i == 0:
for func in space:
combs.append( [(func, i)] )
else:
new_combs = []
for string in combs:
for func in space:
xstring = string + [(func, i)]
new_combs.append( xstring )
combs = new_combs
return combs
class Structure:
def __init__(self, genotype):
assert isinstance(genotype, list) or isinstance(genotype, tuple), 'invalid class of genotype : {:}'.format(type(genotype))
self.node_num = len(genotype) + 1
self.nodes = []
self.node_N = []
for idx, node_info in enumerate(genotype):
assert isinstance(node_info, list) or isinstance(node_info, tuple), 'invalid class of node_info : {:}'.format(type(node_info))
assert len(node_info) >= 1, 'invalid length : {:}'.format(len(node_info))
for node_in in node_info:
assert isinstance(node_in, list) or isinstance(node_in, tuple), 'invalid class of in-node : {:}'.format(type(node_in))
assert len(node_in) == 2 and node_in[1] <= idx, 'invalid in-node : {:}'.format(node_in)
self.node_N.append( len(node_info) )
self.nodes.append( tuple(deepcopy(node_info)) )
def tolist(self, remove_str):
# convert this class to the list, if remove_str is 'none', then remove the 'none' operation.
# note that we re-order the input node in this function
# return the-genotype-list and success [if unsuccess, it is not a connectivity]
genotypes = []
for node_info in self.nodes:
node_info = list( node_info )
node_info = sorted(node_info, key=lambda x: (x[1], x[0]))
node_info = tuple(filter(lambda x: x[0] != remove_str, node_info))
if len(node_info) == 0: return None, False
genotypes.append( node_info )
return genotypes, True
def node(self, index):
assert index > 0 and index <= len(self), 'invalid index={:} < {:}'.format(index, len(self))
return self.nodes[index]
def tostr(self):
strings = []
for node_info in self.nodes:
string = '|'.join([x[0]+'~{:}'.format(x[1]) for x in node_info])
string = '|{:}|'.format(string)
strings.append( string )
return '+'.join(strings)
def check_valid(self):
nodes = {0: True}
for i, node_info in enumerate(self.nodes):
sums = []
for op, xin in node_info:
if op == 'none' or nodes[xin] is False: x = False
else: x = True
sums.append( x )
nodes[i+1] = sum(sums) > 0
return nodes[len(self.nodes)]
def to_unique_str(self, consider_zero=False):
# this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation
# two operations are special, i.e., none and skip_connect
nodes = {0: '0'}
for i_node, node_info in enumerate(self.nodes):
cur_node = []
for op, xin in node_info:
if consider_zero is None:
x = '('+nodes[xin]+')' + '@{:}'.format(op)
elif consider_zero:
if op == 'none' or nodes[xin] == '#': x = '#' # zero
elif op == 'skip_connect': x = nodes[xin]
else: x = '('+nodes[xin]+')' + '@{:}'.format(op)
else:
if op == 'skip_connect': x = nodes[xin]
else: x = '('+nodes[xin]+')' + '@{:}'.format(op)
cur_node.append(x)
nodes[i_node+1] = '+'.join( sorted(cur_node) )
return nodes[ len(self.nodes) ]
def check_valid_op(self, op_names):
for node_info in self.nodes:
for inode_edge in node_info:
#assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0])
if inode_edge[0] not in op_names: return False
return True
def __repr__(self):
return ('{name}({node_num} nodes with {node_info})'.format(name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__))
def __len__(self):
return len(self.nodes) + 1
def __getitem__(self, index):
return self.nodes[index]
@staticmethod
def str2structure(xstr):
assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr))
nodestrs = xstr.split('+')
genotypes = []
for i, node_str in enumerate(nodestrs):
inputs = list(filter(lambda x: x != '', node_str.split('|')))
for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
inputs = ( xi.split('~') for xi in inputs )
input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs)
genotypes.append( input_infos )
return Structure( genotypes )
@staticmethod
def str2fullstructure(xstr, default_name='none'):
assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr))
nodestrs = xstr.split('+')
genotypes = []
for i, node_str in enumerate(nodestrs):
inputs = list(filter(lambda x: x != '', node_str.split('|')))
for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
inputs = ( xi.split('~') for xi in inputs )
input_infos = list( (op, int(IDX)) for (op, IDX) in inputs)
all_in_nodes= list(x[1] for x in input_infos)
for j in range(i):
if j not in all_in_nodes: input_infos.append((default_name, j))
node_info = sorted(input_infos, key=lambda x: (x[1], x[0]))
genotypes.append( tuple(node_info) )
return Structure( genotypes )
@staticmethod
def gen_all(search_space, num, return_ori):
assert isinstance(search_space, list) or isinstance(search_space, tuple), 'invalid class of search-space : {:}'.format(type(search_space))
assert num >= 2, 'There should be at least two nodes in a neural cell instead of {:}'.format(num)
all_archs = get_combination(search_space, 1)
for i, arch in enumerate(all_archs):
all_archs[i] = [ tuple(arch) ]
for inode in range(2, num):
cur_nodes = get_combination(search_space, inode)
new_all_archs = []
for previous_arch in all_archs:
for cur_node in cur_nodes:
new_all_archs.append( previous_arch + [tuple(cur_node)] )
all_archs = new_all_archs
if return_ori:
return all_archs
else:
return [Structure(x) for x in all_archs]
ResNet_CODE = Structure(
[(('nor_conv_3x3', 0), ), # node-1
(('nor_conv_3x3', 1), ), # node-2
(('skip_connect', 0), ('skip_connect', 2))] # node-3
)
AllConv3x3_CODE = Structure(
[(('nor_conv_3x3', 0), ), # node-1
(('nor_conv_3x3', 0), ('nor_conv_3x3', 1)), # node-2
(('nor_conv_3x3', 0), ('nor_conv_3x3', 1), ('nor_conv_3x3', 2))] # node-3
)
AllFull_CODE = Structure(
[(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0)), # node-1
(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1)), # node-2
(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1), ('skip_connect', 2), ('nor_conv_1x1', 2), ('nor_conv_3x3', 2), ('avg_pool_3x3', 2))] # node-3
)
AllConv1x1_CODE = Structure(
[(('nor_conv_1x1', 0), ), # node-1
(('nor_conv_1x1', 0), ('nor_conv_1x1', 1)), # node-2
(('nor_conv_1x1', 0), ('nor_conv_1x1', 1), ('nor_conv_1x1', 2))] # node-3
)
AllIdentity_CODE = Structure(
[(('skip_connect', 0), ), # node-1
(('skip_connect', 0), ('skip_connect', 1)), # node-2
(('skip_connect', 0), ('skip_connect', 1), ('skip_connect', 2))] # node-3
)
architectures = {'resnet' : ResNet_CODE,
'all_c3x3': AllConv3x3_CODE,
'all_c1x1': AllConv1x1_CODE,
'all_idnt': AllIdentity_CODE,
'all_full': AllFull_CODE}

View File

@@ -0,0 +1,197 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import math, random, torch
import warnings
import torch.nn as nn
import torch.nn.functional as F
from copy import deepcopy
from ..cell_operations import OPS
# This module is used for NAS-Bench-201, represents a small search space with a complete DAG
class NAS201SearchCell(nn.Module):
def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False, track_running_stats=True):
super(NAS201SearchCell, self).__init__()
self.op_names = deepcopy(op_names)
self.edges = nn.ModuleDict()
self.max_nodes = max_nodes
self.in_dim = C_in
self.out_dim = C_out
for i in range(1, max_nodes):
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
if j == 0:
xlists = [OPS[op_name](C_in , C_out, stride, affine, track_running_stats) for op_name in op_names]
else:
xlists = [OPS[op_name](C_in , C_out, 1, affine, track_running_stats) for op_name in op_names]
self.edges[ node_str ] = nn.ModuleList( xlists )
self.edge_keys = sorted(list(self.edges.keys()))
self.edge2index = {key:i for i, key in enumerate(self.edge_keys)}
self.num_edges = len(self.edges)
def extra_repr(self):
string = 'info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
return string
def forward(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = weightss[ self.edge2index[node_str] ]
inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# GDAS
def forward_gdas(self, inputs, hardwts, index):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = hardwts[ self.edge2index[node_str] ]
argmaxs = index[ self.edge2index[node_str] ].item()
weigsum = sum( weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] for _ie, edge in enumerate(self.edges[node_str]) )
inter_nodes.append( weigsum )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# joint
def forward_joint(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = weightss[ self.edge2index[node_str] ]
#aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel()
aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) )
inter_nodes.append( aggregation )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# uniform random sampling per iteration, SETN
def forward_urs(self, inputs):
nodes = [inputs]
for i in range(1, self.max_nodes):
while True: # to avoid select zero for all ops
sops, has_non_zero = [], False
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
candidates = self.edges[node_str]
select_op = random.choice(candidates)
sops.append( select_op )
if not hasattr(select_op, 'is_zero') or select_op.is_zero is False: has_non_zero=True
if has_non_zero: break
inter_nodes = []
for j, select_op in enumerate(sops):
inter_nodes.append( select_op(nodes[j]) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# select the argmax
def forward_select(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = weightss[ self.edge2index[node_str] ]
inter_nodes.append( self.edges[node_str][ weights.argmax().item() ]( nodes[j] ) )
#inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# forward with a specific structure
def forward_dynamic(self, inputs, structure):
nodes = [inputs]
for i in range(1, self.max_nodes):
cur_op_node = structure.nodes[i-1]
inter_nodes = []
for op_name, j in cur_op_node:
node_str = '{:}<-{:}'.format(i, j)
op_index = self.op_names.index( op_name )
inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
class MixedOp(nn.Module):
def __init__(self, space, C, stride, affine, track_running_stats):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in space:
op = OPS[primitive](C, C, stride, affine, track_running_stats)
self._ops.append(op)
def forward_gdas(self, x, weights, index):
return self._ops[index](x) * weights[index]
def forward_darts(self, x, weights):
return sum(w * op(x) for w, op in zip(weights, self._ops))
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
class NASNetSearchCell(nn.Module):
def __init__(self, space, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats):
super(NASNetSearchCell, self).__init__()
self.reduction = reduction
self.op_names = deepcopy(space)
if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats)
else : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats)
self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
self.edges = nn.ModuleDict()
for i in range(self._steps):
for j in range(2+i):
node_str = '{:}<-{:}'.format(i, j) # indicate the edge from node-(j) to node-(i+2)
stride = 2 if reduction and j < 2 else 1
op = MixedOp(space, C, stride, affine, track_running_stats)
self.edges[ node_str ] = op
self.edge_keys = sorted(list(self.edges.keys()))
self.edge2index = {key:i for i, key in enumerate(self.edge_keys)}
self.num_edges = len(self.edges)
def forward_gdas(self, s0, s1, weightss, indexs):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
node_str = '{:}<-{:}'.format(i, j)
op = self.edges[ node_str ]
weights = weightss[ self.edge2index[node_str] ]
index = indexs[ self.edge2index[node_str] ].item()
clist.append( op.forward_gdas(h, weights, index) )
states.append( sum(clist) )
return torch.cat(states[-self._multiplier:], dim=1)
def forward_darts(self, s0, s1, weightss):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
node_str = '{:}<-{:}'.format(i, j)
op = self.edges[ node_str ]
weights = weightss[ self.edge2index[node_str] ]
clist.append( op.forward_darts(h, weights) )
states.append( sum(clist) )
return torch.cat(states[-self._multiplier:], dim=1)

View File

@@ -0,0 +1,97 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
########################################################
# DARTS: Differentiable Architecture Search, ICLR 2019 #
########################################################
import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
class TinyNetworkDarts(nn.Module):
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
super(TinyNetworkDarts, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev = cell.out_dim
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def get_alphas(self):
return [self.arch_parameters]
def show_alphas(self):
with torch.no_grad():
return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() )
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def genotype(self):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
with torch.no_grad():
weights = self.arch_parameters[ self.edge2index[node_str] ]
op_name = self.op_names[ weights.argmax().item() ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
def forward(self, inputs):
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell(feature, alphas)
else:
feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -0,0 +1,108 @@
####################
# DARTS, ICLR 2019 #
####################
import torch
import torch.nn as nn
from copy import deepcopy
from typing import List, Text, Dict
from .search_cells import NASNetSearchCell as SearchCell
# The macro structure is based on NASNet
class NASNetworkDARTS(nn.Module):
def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int,
num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool):
super(NASNetworkDARTS, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C*stem_multiplier))
# config for each layer
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
def get_weights(self) -> List[torch.nn.Parameter]:
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def get_alphas(self) -> List[torch.nn.Parameter]:
return [self.arch_normal_parameters, self.arch_reduce_parameters]
def show_alphas(self) -> Text:
with torch.no_grad():
A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() )
B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() )
return '{:}\n{:}'.format(A, B)
def get_message(self) -> Text:
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self) -> Text:
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def genotype(self) -> Dict[Text, List]:
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2+i):
node_str = '{:}<-{:}'.format(i, j)
ws = weights[ self.edge2index[node_str] ]
for k, op_name in enumerate(self.op_names):
if op_name == 'none': continue
edges.append( (op_name, j, ws[k]) )
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append( tuple(selected_edges) )
return gene
with torch.no_grad():
gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy())
gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy())
return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)),
'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
def forward(self, inputs):
normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1)
reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1)
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction: ww = reduce_w
else : ww = normal_w
s0, s1 = s1, cell.forward_darts(s0, s1, ww)
out = self.lastact(s1)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -0,0 +1,94 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##########################################################################
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
##########################################################################
import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
from .search_model_enas_utils import Controller
class TinyNetworkENAS(nn.Module):
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
super(TinyNetworkENAS, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev = cell.out_dim
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
# to maintain the sampled architecture
self.sampled_arch = None
def update_arch(self, _arch):
if _arch is None:
self.sampled_arch = None
elif isinstance(_arch, Structure):
self.sampled_arch = _arch
elif isinstance(_arch, (list, tuple)):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
op_index = _arch[ self.edge2index[node_str] ]
op_name = self.op_names[ op_index ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
self.sampled_arch = Structure(genotypes)
else:
raise ValueError('invalid type of input architecture : {:}'.format(_arch))
return self.sampled_arch
def create_controller(self):
return Controller(len(self.edge2index), len(self.op_names))
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def forward(self, inputs):
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell.forward_dynamic(feature, self.sampled_arch)
else: feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -0,0 +1,55 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##########################################################################
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
##########################################################################
import torch
import torch.nn as nn
from torch.distributions.categorical import Categorical
class Controller(nn.Module):
# we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py
def __init__(self, num_edge, num_ops, lstm_size=32, lstm_num_layers=2, tanh_constant=2.5, temperature=5.0):
super(Controller, self).__init__()
# assign the attributes
self.num_edge = num_edge
self.num_ops = num_ops
self.lstm_size = lstm_size
self.lstm_N = lstm_num_layers
self.tanh_constant = tanh_constant
self.temperature = temperature
# create parameters
self.register_parameter('input_vars', nn.Parameter(torch.Tensor(1, 1, lstm_size)))
self.w_lstm = nn.LSTM(input_size=self.lstm_size, hidden_size=self.lstm_size, num_layers=self.lstm_N)
self.w_embd = nn.Embedding(self.num_ops, self.lstm_size)
self.w_pred = nn.Linear(self.lstm_size, self.num_ops)
nn.init.uniform_(self.input_vars , -0.1, 0.1)
nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1)
nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1)
nn.init.uniform_(self.w_embd.weight , -0.1, 0.1)
nn.init.uniform_(self.w_pred.weight , -0.1, 0.1)
def forward(self):
inputs, h0 = self.input_vars, None
log_probs, entropys, sampled_arch = [], [], []
for iedge in range(self.num_edge):
outputs, h0 = self.w_lstm(inputs, h0)
logits = self.w_pred(outputs)
logits = logits / self.temperature
logits = self.tanh_constant * torch.tanh(logits)
# distribution
op_distribution = Categorical(logits=logits)
op_index = op_distribution.sample()
sampled_arch.append( op_index.item() )
op_log_prob = op_distribution.log_prob(op_index)
log_probs.append( op_log_prob.view(-1) )
op_entropy = op_distribution.entropy()
entropys.append( op_entropy.view(-1) )
# obtain the input embedding for the next step
inputs = self.w_embd(op_index)
return torch.sum(torch.cat(log_probs)), torch.sum(torch.cat(entropys)), sampled_arch

View File

@@ -0,0 +1,111 @@
###########################################################################
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
###########################################################################
import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
class TinyNetworkGDAS(nn.Module):
#def __init__(self, C, N, max_nodes, num_classes, search_space, affine=False, track_running_stats=True):
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
super(TinyNetworkGDAS, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev = cell.out_dim
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.tau = 10
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def get_alphas(self):
return [self.arch_parameters]
def show_alphas(self):
with torch.no_grad():
return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() )
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def genotype(self):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
with torch.no_grad():
weights = self.arch_parameters[ self.edge2index[node_str] ]
op_name = self.op_names[ weights.argmax().item() ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
def forward(self, inputs):
while True:
gumbels = -torch.empty_like(self.arch_parameters).exponential_().log()
logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
continue
else: break
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell.forward_gdas(feature, hardwts, index)
else:
feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -0,0 +1,125 @@
###########################################################################
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
###########################################################################
import torch
import torch.nn as nn
from copy import deepcopy
from .search_cells import NASNetSearchCell as SearchCell
# The macro structure is based on NASNet
class NASNetworkGDAS(nn.Module):
def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats):
super(NASNetworkGDAS, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C*stem_multiplier))
# config for each layer
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.tau = 10
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def get_alphas(self):
return [self.arch_normal_parameters, self.arch_reduce_parameters]
def show_alphas(self):
with torch.no_grad():
A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() )
B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() )
return '{:}\n{:}'.format(A, B)
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def genotype(self):
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2+i):
node_str = '{:}<-{:}'.format(i, j)
ws = weights[ self.edge2index[node_str] ]
for k, op_name in enumerate(self.op_names):
if op_name == 'none': continue
edges.append( (op_name, j, ws[k]) )
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append( tuple(selected_edges) )
return gene
with torch.no_grad():
gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy())
gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy())
return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)),
'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
def forward(self, inputs):
def get_gumbel_prob(xins):
while True:
gumbels = -torch.empty_like(xins).exponential_().log()
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
continue
else: break
return hardwts, index
normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters)
reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters)
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction: hardwts, index = reduce_hardwts, reduce_index
else : hardwts, index = normal_hardwts, normal_index
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
out = self.lastact(s1)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -0,0 +1,81 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##############################################################################
# Random Search and Reproducibility for Neural Architecture Search, UAI 2019 #
##############################################################################
import torch, random
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
class TinyNetworkRANDOM(nn.Module):
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
super(TinyNetworkRANDOM, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev = cell.out_dim
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_cache = None
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def random_genotype(self, set_cache):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
op_name = random.choice( self.op_names )
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
arch = Structure( genotypes )
if set_cache: self.arch_cache = arch
return arch
def forward(self, inputs):
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell.forward_dynamic(feature, self.arch_cache)
else: feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -0,0 +1,152 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
######################################################################################
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
######################################################################################
import torch, random
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
class TinyNetworkSETN(nn.Module):
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
super(TinyNetworkSETN, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev = cell.out_dim
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.mode = 'urs'
self.dynamic_cell = None
def set_cal_mode(self, mode, dynamic_cell=None):
assert mode in ['urs', 'joint', 'select', 'dynamic']
self.mode = mode
if mode == 'dynamic': self.dynamic_cell = deepcopy( dynamic_cell )
else : self.dynamic_cell = None
def get_cal_mode(self):
return self.mode
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def get_alphas(self):
return [self.arch_parameters]
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def genotype(self):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
with torch.no_grad():
weights = self.arch_parameters[ self.edge2index[node_str] ]
op_name = self.op_names[ weights.argmax().item() ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
def dync_genotype(self, use_random=False):
genotypes = []
with torch.no_grad():
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
if use_random:
op_name = random.choice(self.op_names)
else:
weights = alphas_cpu[ self.edge2index[node_str] ]
op_index = torch.multinomial(weights, 1).item()
op_name = self.op_names[ op_index ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
def get_log_prob(self, arch):
with torch.no_grad():
logits = nn.functional.log_softmax(self.arch_parameters, dim=-1)
select_logits = []
for i, node_info in enumerate(arch.nodes):
for op, xin in node_info:
node_str = '{:}<-{:}'.format(i+1, xin)
op_index = self.op_names.index(op)
select_logits.append( logits[self.edge2index[node_str], op_index] )
return sum(select_logits).item()
def return_topK(self, K):
archs = Structure.gen_all(self.op_names, self.max_nodes, False)
pairs = [(self.get_log_prob(arch), arch) for arch in archs]
if K < 0 or K >= len(archs): K = len(archs)
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
return return_pairs
def forward(self, inputs):
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
with torch.no_grad():
alphas_cpu = alphas.detach().cpu()
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
if self.mode == 'urs':
feature = cell.forward_urs(feature)
elif self.mode == 'select':
feature = cell.forward_select(feature, alphas_cpu)
elif self.mode == 'joint':
feature = cell.forward_joint(feature, alphas)
elif self.mode == 'dynamic':
feature = cell.forward_dynamic(feature, self.dynamic_cell)
else: raise ValueError('invalid mode={:}'.format(self.mode))
else: feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -0,0 +1,139 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
######################################################################################
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
######################################################################################
import torch
import torch.nn as nn
from copy import deepcopy
from typing import List, Text, Dict
from .search_cells import NASNetSearchCell as SearchCell
# The macro structure is based on NASNet
class NASNetworkSETN(nn.Module):
def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int,
num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool):
super(NASNetworkSETN, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C*stem_multiplier))
# config for each layer
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.mode = 'urs'
self.dynamic_cell = None
def set_cal_mode(self, mode, dynamic_cell=None):
assert mode in ['urs', 'joint', 'select', 'dynamic']
self.mode = mode
if mode == 'dynamic':
self.dynamic_cell = deepcopy(dynamic_cell)
else:
self.dynamic_cell = None
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def get_alphas(self):
return [self.arch_normal_parameters, self.arch_reduce_parameters]
def show_alphas(self):
with torch.no_grad():
A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() )
B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() )
return '{:}\n{:}'.format(A, B)
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def dync_genotype(self, use_random=False):
genotypes = []
with torch.no_grad():
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
if use_random:
op_name = random.choice(self.op_names)
else:
weights = alphas_cpu[ self.edge2index[node_str] ]
op_index = torch.multinomial(weights, 1).item()
op_name = self.op_names[ op_index ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
def genotype(self):
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2+i):
node_str = '{:}<-{:}'.format(i, j)
ws = weights[ self.edge2index[node_str] ]
for k, op_name in enumerate(self.op_names):
if op_name == 'none': continue
edges.append( (op_name, j, ws[k]) )
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append( tuple(selected_edges) )
return gene
with torch.no_grad():
gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy())
gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy())
return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)),
'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
def forward(self, inputs):
normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1)
reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1)
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
# [TODO]
raise NotImplementedError
if cell.reduction: hardwts, index = reduce_hardwts, reduce_index
else : hardwts, index = normal_hardwts, normal_index
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
out = self.lastact(s1)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

62
models/clone_weights.py Normal file
View File

@@ -0,0 +1,62 @@
import torch
import torch.nn as nn
def copy_conv(module, init):
assert isinstance(module, nn.Conv2d), 'invalid module : {:}'.format(module)
assert isinstance(init , nn.Conv2d), 'invalid module : {:}'.format(init)
new_i, new_o = module.in_channels, module.out_channels
module.weight.copy_( init.weight.detach()[:new_o, :new_i] )
if module.bias is not None:
module.bias.copy_( init.bias.detach()[:new_o] )
def copy_bn (module, init):
assert isinstance(module, nn.BatchNorm2d), 'invalid module : {:}'.format(module)
assert isinstance(init , nn.BatchNorm2d), 'invalid module : {:}'.format(init)
num_features = module.num_features
if module.weight is not None:
module.weight.copy_( init.weight.detach()[:num_features] )
if module.bias is not None:
module.bias.copy_( init.bias.detach()[:num_features] )
if module.running_mean is not None:
module.running_mean.copy_( init.running_mean.detach()[:num_features] )
if module.running_var is not None:
module.running_var.copy_( init.running_var.detach()[:num_features] )
def copy_fc (module, init):
assert isinstance(module, nn.Linear), 'invalid module : {:}'.format(module)
assert isinstance(init , nn.Linear), 'invalid module : {:}'.format(init)
new_i, new_o = module.in_features, module.out_features
module.weight.copy_( init.weight.detach()[:new_o, :new_i] )
if module.bias is not None:
module.bias.copy_( init.bias.detach()[:new_o] )
def copy_base(module, init):
assert type(module).__name__ in ['ConvBNReLU', 'Downsample'], 'invalid module : {:}'.format(module)
assert type( init).__name__ in ['ConvBNReLU', 'Downsample'], 'invalid module : {:}'.format( init)
if module.conv is not None:
copy_conv(module.conv, init.conv)
if module.bn is not None:
copy_bn (module.bn, init.bn)
def copy_basic(module, init):
copy_base(module.conv_a, init.conv_a)
copy_base(module.conv_b, init.conv_b)
if module.downsample is not None:
if init.downsample is not None:
copy_base(module.downsample, init.downsample)
#else:
# import pdb; pdb.set_trace()
def init_from_model(network, init_model):
with torch.no_grad():
copy_fc(network.classifier, init_model.classifier)
for base, target in zip(init_model.layers, network.layers):
assert type(base).__name__ == type(target).__name__, 'invalid type : {:} vs {:}'.format(base, target)
if type(base).__name__ == 'ConvBNReLU':
copy_base(target, base)
elif type(base).__name__ == 'ResNetBasicblock':
copy_basic(target, base)
else:
raise ValueError('unknown type name : {:}'.format( type(base).__name__ ))

18
models/initialization.py Normal file
View File

@@ -0,0 +1,18 @@
import torch
import torch.nn as nn
def initialize_resnet(m):
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)

View File

@@ -0,0 +1,167 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import torch.nn as nn
import torch.nn.functional as F
from ..initialization import initialize_resnet
class ConvBNReLU(nn.Module):
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
if has_bn : self.bn = nn.BatchNorm2d(nOut)
else : self.bn = None
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
def forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.bn : out = self.bn( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
return out
class ResNetBasicblock(nn.Module):
num_conv = 2
expansion = 1
def __init__(self, iCs, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs)
self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
residual_in = iCs[2]
elif iCs[0] != iCs[2]:
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
#self.out_dim = max(residual_in, iCs[2])
self.out_dim = iCs[2]
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, iCs, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs)
self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False)
residual_in = iCs[3]
elif iCs[0] != iCs[3]:
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False)
residual_in = iCs[3]
else:
self.downsample = None
#self.out_dim = max(residual_in, iCs[3])
self.out_dim = iCs[3]
def forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
class InferCifarResNet(nn.Module):
def __init__(self, block_name, depth, xblocks, xchannels, num_classes, zero_init_residual):
super(InferCifarResNet, self).__init__()
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
assert len(xblocks) == 3, 'invalid xblocks : {:}'.format(xblocks)
self.message = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.xchannels = xchannels
self.layers = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
last_channel_idx = 1
for stage in range(3):
for iL in range(layer_blocks):
num_conv = block.num_conv
iCs = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1]
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iCs, stride)
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride)
if iL + 1 == xblocks[stage]: # reach the maximum depth
out_channel = module.out_dim
for iiL in range(iL+1, layer_blocks):
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
break
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
def get_message(self):
return self.message
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -0,0 +1,150 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import torch.nn as nn
import torch.nn.functional as F
from ..initialization import initialize_resnet
class ConvBNReLU(nn.Module):
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
if has_bn : self.bn = nn.BatchNorm2d(nOut)
else : self.bn = None
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
def forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.bn : out = self.bn( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
return out
class ResNetBasicblock(nn.Module):
num_conv = 2
expansion = 1
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False)
elif inplanes != planes*self.expansion:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False)
else:
self.downsample = None
self.out_dim = planes*self.expansion
def forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
class InferDepthCifarResNet(nn.Module):
def __init__(self, block_name, depth, xblocks, num_classes, zero_init_residual):
super(InferDepthCifarResNet, self).__init__()
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
assert len(xblocks) == 3, 'invalid xblocks : {:}'.format(xblocks)
self.message = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.channels = [16]
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, planes, module.out_dim, stride)
if iL + 1 == xblocks[stage]: # reach the maximum depth
break
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(self.channels[-1], num_classes)
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
def get_message(self):
return self.message
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -0,0 +1,160 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import torch.nn as nn
import torch.nn.functional as F
from ..initialization import initialize_resnet
class ConvBNReLU(nn.Module):
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
if has_bn : self.bn = nn.BatchNorm2d(nOut)
else : self.bn = None
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
def forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.bn : out = self.bn( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
return out
class ResNetBasicblock(nn.Module):
num_conv = 2
expansion = 1
def __init__(self, iCs, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs)
self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
residual_in = iCs[2]
elif iCs[0] != iCs[2]:
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
#self.out_dim = max(residual_in, iCs[2])
self.out_dim = iCs[2]
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, iCs, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs)
self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False)
residual_in = iCs[3]
elif iCs[0] != iCs[3]:
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False)
residual_in = iCs[3]
else:
self.downsample = None
#self.out_dim = max(residual_in, iCs[3])
self.out_dim = iCs[3]
def forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
class InferWidthCifarResNet(nn.Module):
def __init__(self, block_name, depth, xchannels, num_classes, zero_init_residual):
super(InferWidthCifarResNet, self).__init__()
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
self.message = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.xchannels = xchannels
self.layers = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
last_channel_idx = 1
for stage in range(3):
for iL in range(layer_blocks):
num_conv = block.num_conv
iCs = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1]
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iCs, stride)
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
def get_message(self):
return self.message
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -0,0 +1,170 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import torch.nn as nn
import torch.nn.functional as F
from ..initialization import initialize_resnet
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
if has_bn : self.bn = nn.BatchNorm2d(nOut)
else : self.bn = None
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
def forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.bn : out = self.bn( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
return out
class ResNetBasicblock(nn.Module):
num_conv = 2
expansion = 1
def __init__(self, iCs, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs)
self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False)
residual_in = iCs[2]
elif iCs[0] != iCs[2]:
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
#self.out_dim = max(residual_in, iCs[2])
self.out_dim = iCs[2]
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, iCs, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs)
self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=True, has_relu=False)
residual_in = iCs[3]
elif iCs[0] != iCs[3]:
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[3]
else:
self.downsample = None
#self.out_dim = max(residual_in, iCs[3])
self.out_dim = iCs[3]
def forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
class InferImagenetResNet(nn.Module):
def __init__(self, block_name, layers, xblocks, xchannels, deep_stem, num_classes, zero_init_residual):
super(InferImagenetResNet, self).__init__()
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'BasicBlock':
block = ResNetBasicblock
elif block_name == 'Bottleneck':
block = ResNetBottleneck
else:
raise ValueError('invalid block : {:}'.format(block_name))
assert len(xblocks) == len(layers), 'invalid layers : {:} vs xblocks : {:}'.format(layers, xblocks)
self.message = 'InferImagenetResNet : Depth : {:} -> {:}, Layers for each block : {:}'.format(sum(layers)*block.num_conv, sum(xblocks)*block.num_conv, xblocks)
self.num_classes = num_classes
self.xchannels = xchannels
if not deep_stem:
self.layers = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 7, 2, 3, False, has_avg=False, has_bn=True, has_relu=True) ] )
last_channel_idx = 1
else:
self.layers = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True)
,ConvBNReLU(xchannels[1], xchannels[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
last_channel_idx = 2
self.layers.append( nn.MaxPool2d(kernel_size=3, stride=2, padding=1) )
for stage, layer_blocks in enumerate(layers):
for iL in range(layer_blocks):
num_conv = block.num_conv
iCs = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1]
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iCs, stride)
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride)
if iL + 1 == xblocks[stage]: # reach the maximum depth
out_channel = module.out_dim
for iiL in range(iL+1, layer_blocks):
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
break
assert last_channel_idx + 1 == len(self.xchannels), '{:} vs {:}'.format(last_channel_idx, len(self.xchannels))
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
def get_message(self):
return self.message
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -0,0 +1,122 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
from torch import nn
from ..initialization import initialize_resnet
from ..SharedUtils import parse_channel_info
class ConvBNReLU(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride, groups, has_bn=True, has_relu=True):
super(ConvBNReLU, self).__init__()
padding = (kernel_size - 1) // 2
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False)
if has_bn: self.bn = nn.BatchNorm2d(out_planes)
else : self.bn = None
if has_relu: self.relu = nn.ReLU6(inplace=True)
else : self.relu = None
def forward(self, x):
out = self.conv( x )
if self.bn: out = self.bn ( out )
if self.relu: out = self.relu( out )
return out
class InvertedResidual(nn.Module):
def __init__(self, channels, stride, expand_ratio, additive):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2], 'invalid stride : {:}'.format(stride)
assert len(channels) in [2, 3], 'invalid channels : {:}'.format(channels)
if len(channels) == 2:
layers = []
else:
layers = [ConvBNReLU(channels[0], channels[1], 1, 1, 1)]
layers.extend([
# dw
ConvBNReLU(channels[-2], channels[-2], 3, stride, channels[-2]),
# pw-linear
ConvBNReLU(channels[-2], channels[-1], 1, 1, 1, True, False),
])
self.conv = nn.Sequential(*layers)
self.additive = additive
if self.additive and channels[0] != channels[-1]:
self.shortcut = ConvBNReLU(channels[0], channels[-1], 1, 1, 1, True, False)
else:
self.shortcut = None
self.out_dim = channels[-1]
def forward(self, x):
out = self.conv(x)
# if self.additive: return additive_func(out, x)
if self.shortcut: return out + self.shortcut(x)
else : return out
class InferMobileNetV2(nn.Module):
def __init__(self, num_classes, xchannels, xblocks, dropout):
super(InferMobileNetV2, self).__init__()
block = InvertedResidual
inverted_residual_setting = [
# t, c, n, s
[1, 16 , 1, 1],
[6, 24 , 2, 2],
[6, 32 , 3, 2],
[6, 64 , 4, 2],
[6, 96 , 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
assert len(inverted_residual_setting) == len(xblocks), 'invalid number of layers : {:} vs {:}'.format(len(inverted_residual_setting), len(xblocks))
for block_num, ir_setting in zip(xblocks, inverted_residual_setting):
assert block_num <= ir_setting[2], '{:} vs {:}'.format(block_num, ir_setting)
xchannels = parse_channel_info(xchannels)
#for i, chs in enumerate(xchannels):
# if i > 0: assert chs[0] == xchannels[i-1][-1], 'Layer[{:}] is invalid {:} vs {:}'.format(i, xchannels[i-1], chs)
self.xchannels = xchannels
self.message = 'InferMobileNetV2 : xblocks={:}'.format(xblocks)
# building first layer
features = [ConvBNReLU(xchannels[0][0], xchannels[0][1], 3, 2, 1)]
last_channel_idx = 1
# building inverted residual blocks
for stage, (t, c, n, s) in enumerate(inverted_residual_setting):
for i in range(n):
stride = s if i == 0 else 1
additv = True if i > 0 else False
module = block(self.xchannels[last_channel_idx], stride, t, additv)
features.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, Cs={:}, stride={:}, expand={:}, original-C={:}".format(stage, i, n, len(features), self.xchannels[last_channel_idx], stride, t, c)
last_channel_idx += 1
if i + 1 == xblocks[stage]:
out_channel = module.out_dim
for iiL in range(i+1, n):
last_channel_idx += 1
self.xchannels[last_channel_idx][0] = module.out_dim
break
# building last several layers
features.append(ConvBNReLU(self.xchannels[last_channel_idx][0], self.xchannels[last_channel_idx][1], 1, 1, 1))
assert last_channel_idx + 2 == len(self.xchannels), '{:} vs {:}'.format(last_channel_idx, len(self.xchannels))
# make it nn.Sequential
self.features = nn.Sequential(*features)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(dropout),
nn.Linear(self.xchannels[last_channel_idx][1], num_classes),
)
# weight initialization
self.apply( initialize_resnet )
def get_message(self):
return self.message
def forward(self, inputs):
features = self.features(inputs)
vectors = features.mean([2, 3])
predicts = self.classifier(vectors)
return features, predicts

View File

@@ -0,0 +1,58 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
from typing import List, Text, Any
import torch.nn as nn
from models.cell_operations import ResNetBasicblock
from models.cell_infers.cells import InferCell
class DynamicShapeTinyNet(nn.Module):
def __init__(self, channels: List[int], genotype: Any, num_classes: int):
super(DynamicShapeTinyNet, self).__init__()
self._channels = channels
if len(channels) % 3 != 2:
raise ValueError('invalid number of layers : {:}'.format(len(channels)))
self._num_stage = N = len(channels) // 3
self.stem = nn.Sequential(
nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(channels[0]))
# layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
c_prev = channels[0]
self.cells = nn.ModuleList()
for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)):
if reduction : cell = ResNetBasicblock(c_prev, c_curr, 2, True)
else : cell = InferCell(genotype, c_prev, c_curr, 1)
self.cells.append( cell )
c_prev = cell.out_dim
self._num_layer = len(self.cells)
self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(c_prev, num_classes)
def get_message(self) -> Text:
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_channels}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__))
def forward(self, inputs):
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -0,0 +1,9 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
from .InferCifarResNet_width import InferWidthCifarResNet
from .InferImagenetResNet import InferImagenetResNet
from .InferCifarResNet_depth import InferDepthCifarResNet
from .InferCifarResNet import InferCifarResNet
from .InferMobileNetV2 import InferMobileNetV2
from .InferTinyCellNet import DynamicShapeTinyNet

View File

@@ -0,0 +1,5 @@
def parse_channel_info(xstring):
blocks = xstring.split(' ')
blocks = [x.split('-') for x in blocks]
blocks = [[int(_) for _ in x] for x in blocks]
return blocks

View File

@@ -0,0 +1,502 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import math, torch
from collections import OrderedDict
from bisect import bisect_right
import torch.nn as nn
from ..initialization import initialize_resnet
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices
def get_depth_choices(nDepth, return_num):
if nDepth == 2:
choices = (1, 2)
elif nDepth == 3:
choices = (1, 2, 3)
elif nDepth > 3:
choices = list(range(1, nDepth+1, 2))
if choices[-1] < nDepth: choices.append(nDepth)
else:
raise ValueError('invalid nDepth : {:}'.format(nDepth))
if return_num: return len(choices)
else : return choices
def conv_forward(inputs, conv, choices):
iC = conv.in_channels
fill_size = list(inputs.size())
fill_size[1] = iC - fill_size[1]
filled = torch.zeros(fill_size, device=inputs.device)
xinputs = torch.cat((inputs, filled), dim=1)
outputs = conv(xinputs)
selecteds = [outputs[:,:oC] for oC in choices]
return selecteds
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_width_choices(nOut)
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
#if has_bn : self.bn = nn.BatchNorm2d(nOut)
#else : self.bn = None
self.has_bn = has_bn
self.BNs = nn.ModuleList()
for i, _out in enumerate(self.choices):
self.BNs.append(nn.BatchNorm2d(_out))
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
self.in_dim = nIn
self.out_dim = nOut
self.search_mode = 'basic'
def get_flops(self, channels, check_range=True, divide=1):
iC, oC = channels
if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None: flops += all_positions / divide
return flops
def get_range(self):
return [self.choices]
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, index, prob = tuple_inputs
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
probability = torch.squeeze(probability)
assert len(index) == 2, 'invalid length : {:}'.format(index)
# compute expected flop
#coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
expected_outC = (self.choices_tensor * probability).sum()
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
if self.avg : out = self.avg( inputs )
else : out = inputs
# convolutional layer
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
# merge
out_channel = max([x.size(1) for x in out_bns])
outA = ChannelWiseInter(out_bns[0], out_channel)
outB = ChannelWiseInter(out_bns[1], out_channel)
out = outA * prob[0] + outB * prob[1]
#out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
if self.relu: out = self.relu( out )
else : out = out
return out, expected_outC, expected_flop
def basic_forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.has_bn:out= self.BNs[-1]( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2) , out.size(-1))
return out
class ResNetBasicblock(nn.Module):
expansion = 1
num_conv = 2
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = 'basic'
def get_range(self):
return self.conv_a.get_range() + self.conv_b.get_range()
def get_flops(self, channels):
assert len(channels) == 3, 'invalid channels : {:}'.format(channels)
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
if hasattr(self.downsample, 'get_flops'):
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_C = 0
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1]
return flop_A + flop_B + flop_C
def forward(self, inputs):
if self.search_mode == 'basic' : return self.basic_forward(inputs)
elif self.search_mode == 'search': return self.search_forward(inputs)
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) )
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[1], indexes[1], probs[1]) )
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_b)
return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
def basic_forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes*self.expansion:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.search_mode = 'basic'
def get_range(self):
return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
def get_flops(self, channels):
assert len(channels) == 4, 'invalid channels : {:}'.format(channels)
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
if hasattr(self.downsample, 'get_flops'):
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_D = 0
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1]
return flop_A + flop_B + flop_C + flop_D
def forward(self, inputs):
if self.search_mode == 'basic' : return self.basic_forward(inputs)
elif self.search_mode == 'search': return self.search_forward(inputs)
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def basic_forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, bottleneck)
return nn.functional.relu(out, inplace=True)
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) )
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) )
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[2], indexes[2], probs[2]) )
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_1x4)
return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
class SearchShapeCifarResNet(nn.Module):
def __init__(self, block_name, depth, num_classes):
super(SearchShapeCifarResNet, self).__init__()
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
self.message = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.InShape = None
self.depth_info = OrderedDict()
self.depth_at_i = OrderedDict()
for stage in range(3):
cur_block_choices = get_depth_choices(layer_blocks, False)
assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks)
self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks)
block_choices, xstart = [], len(self.layers)
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
# added for depth
layer_index = len(self.layers) - 1
if iL + 1 in cur_block_choices: block_choices.append( layer_index )
if iL + 1 == layer_blocks:
self.depth_info[layer_index] = {'choices': block_choices,
'stage' : stage,
'xstart' : xstart}
self.depth_info_list = []
for xend, info in self.depth_info.items():
self.depth_info_list.append( (xend, info) )
xstart, xstage = info['xstart'], info['stage']
for ilayer in range(xstart, xend+1):
idx = bisect_right(info['choices'], ilayer-1)
self.depth_at_i[ilayer] = (xstage, idx)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = 'basic'
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
# parameters for width
self.Ranges = []
self.layer2indexRange = []
for i, layer in enumerate(self.layers):
start_index = len(self.Ranges)
self.Ranges += layer.get_range()
self.layer2indexRange.append( (start_index, len(self.Ranges)) )
assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth)
self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))))
self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))))
nn.init.normal_(self.width_attentions, 0, 0.01)
nn.init.normal_(self.depth_attentions, 0, 0.01)
self.apply(initialize_resnet)
def arch_parameters(self, LR=None):
if LR is None:
return [self.width_attentions, self.depth_attentions]
else:
return [
{"params": self.width_attentions, "lr": LR},
{"params": self.depth_attentions, "lr": LR},
]
def base_parameters(self):
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None: config_dict = config_dict.copy()
# select channels
channels = [3]
for i, weight in enumerate(self.width_attentions):
if mode == 'genotype':
with torch.no_grad():
probe = nn.functional.softmax(weight, dim=0)
C = self.Ranges[i][ torch.argmax(probe).item() ]
elif mode == 'max':
C = self.Ranges[i][-1]
elif mode == 'fix':
C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
elif mode == 'random':
assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info)
with torch.no_grad():
prob = nn.functional.softmax(weight, dim=0)
approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
for j in range(prob.size(0)):
prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2)
C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ]
else:
raise ValueError('invalid mode : {:}'.format(mode))
channels.append( C )
# select depth
if mode == 'genotype':
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
elif mode == 'max' or mode == 'fix':
choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))]
elif mode == 'random':
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
else:
raise ValueError('invalid mode : {:}'.format(mode))
selected_layers = []
for choice, xvalue in zip(choices, self.depth_info_list):
xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1
selected_layers.append(xtemp)
flop = 0
for i, layer in enumerate(self.layers):
s, e = self.layer2indexRange[i]
xchl = tuple( channels[s:e+1] )
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
if xatti <= choices[xstagei]: # leave this depth
flop+= layer.get_flops(xchl)
else:
flop+= 0 # do not use this layer
else:
flop+= layer.get_flops(xchl)
# the last fc layer
flop += channels[-1] * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict['xchannels'] = channels
config_dict['xblocks'] = selected_layers
config_dict['super_type'] = 'infer-shape'
config_dict['estimated_FLOP'] = flop / 1e6
return flop / 1e6, config_dict
def get_arch_info(self):
string = "for depth and width, there are {:} + {:} attention probabilities.".format(len(self.depth_attentions), len(self.width_attentions))
string+= '\n{:}'.format(self.depth_info)
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.depth_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob))
logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:17s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
string += '\n-----------------------------------------------'
for i, att in enumerate(self.width_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob))
logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:52s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
return string, discrepancy
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, inputs):
flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1)
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] )
selected_widths, selected_width_probs = select2withP(self.width_attentions, self.tau)
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
with torch.no_grad():
selected_widths = selected_widths.cpu()
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
feature_maps = []
for i, layer in enumerate(self.layers):
selected_w_index = selected_widths [last_channel_idx: last_channel_idx+layer.num_conv]
selected_w_probs = selected_width_probs[last_channel_idx: last_channel_idx+layer.num_conv]
layer_prob = flop_width_probs [last_channel_idx: last_channel_idx+layer.num_conv]
x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) )
feature_maps.append( x )
last_channel_idx += layer.num_conv
if i in self.depth_info: # aggregate the information
choices = self.depth_info[i]['choices']
xstagei = self.depth_info[i]['stage']
#print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist()))
#for A, W in zip(choices, selected_depth_probs[xstagei]):
# print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W))
possible_tensors = []
max_C = max( feature_maps[A].size(1) for A in choices )
for tempi, A in enumerate(choices):
xtensor = ChannelWiseInter(feature_maps[A], max_C)
#drop_ratio = 1-(tempi+1.0)/len(choices)
#xtensor = drop_path(xtensor, drop_ratio)
possible_tensors.append( xtensor )
weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) )
x = weighted_sum
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop
else:
x_expected_flop = expected_flop
flops.append( x_expected_flop )
flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack( [sum(flops)] )
def basic_forward(self, inputs):
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -0,0 +1,340 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import math, torch
from collections import OrderedDict
from bisect import bisect_right
import torch.nn as nn
from ..initialization import initialize_resnet
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices
def get_depth_choices(nDepth, return_num):
if nDepth == 2:
choices = (1, 2)
elif nDepth == 3:
choices = (1, 2, 3)
elif nDepth > 3:
choices = list(range(1, nDepth+1, 2))
if choices[-1] < nDepth: choices.append(nDepth)
else:
raise ValueError('invalid nDepth : {:}'.format(nDepth))
if return_num: return len(choices)
else : return choices
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_width_choices(nOut)
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
if has_bn : self.bn = nn.BatchNorm2d(nOut)
else : self.bn = None
if has_relu: self.relu = nn.ReLU(inplace=False)
else : self.relu = None
self.in_dim = nIn
self.out_dim = nOut
def get_flops(self, divide=1):
iC, oC = self.in_dim, self.out_dim
assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None: flops += all_positions / divide
return flops
def forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.bn : out = self.bn( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2) , out.size(-1))
return out
class ResNetBasicblock(nn.Module):
expansion = 1
num_conv = 2
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = 'basic'
def get_flops(self, divide=1):
flop_A = self.conv_a.get_flops(divide)
flop_B = self.conv_b.get_flops(divide)
if hasattr(self.downsample, 'get_flops'):
flop_C = self.downsample.get_flops(divide)
else:
flop_C = 0
return flop_A + flop_B + flop_C
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes*self.expansion:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.search_mode = 'basic'
def get_range(self):
return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
def get_flops(self, divide):
flop_A = self.conv_1x1.get_flops(divide)
flop_B = self.conv_3x3.get_flops(divide)
flop_C = self.conv_1x4.get_flops(divide)
if hasattr(self.downsample, 'get_flops'):
flop_D = self.downsample.get_flops(divide)
else:
flop_D = 0
return flop_A + flop_B + flop_C + flop_D
def forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, bottleneck)
return nn.functional.relu(out, inplace=True)
class SearchDepthCifarResNet(nn.Module):
def __init__(self, block_name, depth, num_classes):
super(SearchDepthCifarResNet, self).__init__()
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
self.message = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.InShape = None
self.depth_info = OrderedDict()
self.depth_at_i = OrderedDict()
for stage in range(3):
cur_block_choices = get_depth_choices(layer_blocks, False)
assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks)
self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks)
block_choices, xstart = [], len(self.layers)
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
# added for depth
layer_index = len(self.layers) - 1
if iL + 1 in cur_block_choices: block_choices.append( layer_index )
if iL + 1 == layer_blocks:
self.depth_info[layer_index] = {'choices': block_choices,
'stage' : stage,
'xstart' : xstart}
self.depth_info_list = []
for xend, info in self.depth_info.items():
self.depth_info_list.append( (xend, info) )
xstart, xstage = info['xstart'], info['stage']
for ilayer in range(xstart, xend+1):
idx = bisect_right(info['choices'], ilayer-1)
self.depth_at_i[ilayer] = (xstage, idx)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = 'basic'
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))))
nn.init.normal_(self.depth_attentions, 0, 0.01)
self.apply(initialize_resnet)
def arch_parameters(self):
return [self.depth_attentions]
def base_parameters(self):
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None: config_dict = config_dict.copy()
# select depth
if mode == 'genotype':
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
elif mode == 'max':
choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))]
elif mode == 'random':
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
else:
raise ValueError('invalid mode : {:}'.format(mode))
selected_layers = []
for choice, xvalue in zip(choices, self.depth_info_list):
xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1
selected_layers.append(xtemp)
flop = 0
for i, layer in enumerate(self.layers):
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
if xatti <= choices[xstagei]: # leave this depth
flop+= layer.get_flops()
else:
flop+= 0 # do not use this layer
else:
flop+= layer.get_flops()
# the last fc layer
flop += self.classifier.in_features * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict['xblocks'] = selected_layers
config_dict['super_type'] = 'infer-depth'
config_dict['estimated_FLOP'] = flop / 1e6
return flop / 1e6, config_dict
def get_arch_info(self):
string = "for depth, there are {:} attention probabilities.".format(len(self.depth_attentions))
string+= '\n{:}'.format(self.depth_info)
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.depth_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob))
logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:17s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
return string, discrepancy
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, inputs):
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] )
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
x, flops = inputs, []
feature_maps = []
for i, layer in enumerate(self.layers):
layer_i = layer( x )
feature_maps.append( layer_i )
if i in self.depth_info: # aggregate the information
choices = self.depth_info[i]['choices']
xstagei = self.depth_info[i]['stage']
possible_tensors = []
for tempi, A in enumerate(choices):
xtensor = feature_maps[A]
possible_tensors.append( xtensor )
weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) )
x = weighted_sum
else:
x = layer_i
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
#print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6)))
x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(1e6)
else:
x_expected_flop = layer.get_flops(1e6)
flops.append( x_expected_flop )
flops.append( (self.classifier.in_features * self.classifier.out_features*1.0/1e6) )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack( [sum(flops)] )
def basic_forward(self, inputs):
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -0,0 +1,393 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import math, torch
import torch.nn as nn
from ..initialization import initialize_resnet
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices as get_choices
def conv_forward(inputs, conv, choices):
iC = conv.in_channels
fill_size = list(inputs.size())
fill_size[1] = iC - fill_size[1]
filled = torch.zeros(fill_size, device=inputs.device)
xinputs = torch.cat((inputs, filled), dim=1)
outputs = conv(xinputs)
selecteds = [outputs[:,:oC] for oC in choices]
return selecteds
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_choices(nOut)
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
#if has_bn : self.bn = nn.BatchNorm2d(nOut)
#else : self.bn = None
self.has_bn = has_bn
self.BNs = nn.ModuleList()
for i, _out in enumerate(self.choices):
self.BNs.append(nn.BatchNorm2d(_out))
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
self.in_dim = nIn
self.out_dim = nOut
self.search_mode = 'basic'
def get_flops(self, channels, check_range=True, divide=1):
iC, oC = channels
if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None: flops += all_positions / divide
return flops
def get_range(self):
return [self.choices]
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, index, prob = tuple_inputs
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
probability = torch.squeeze(probability)
assert len(index) == 2, 'invalid length : {:}'.format(index)
# compute expected flop
#coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
expected_outC = (self.choices_tensor * probability).sum()
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
if self.avg : out = self.avg( inputs )
else : out = inputs
# convolutional layer
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
# merge
out_channel = max([x.size(1) for x in out_bns])
outA = ChannelWiseInter(out_bns[0], out_channel)
outB = ChannelWiseInter(out_bns[1], out_channel)
out = outA * prob[0] + outB * prob[1]
#out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
if self.relu: out = self.relu( out )
else : out = out
return out, expected_outC, expected_flop
def basic_forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.has_bn:out= self.BNs[-1]( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2) , out.size(-1))
return out
class ResNetBasicblock(nn.Module):
expansion = 1
num_conv = 2
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = 'basic'
def get_range(self):
return self.conv_a.get_range() + self.conv_b.get_range()
def get_flops(self, channels):
assert len(channels) == 3, 'invalid channels : {:}'.format(channels)
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
if hasattr(self.downsample, 'get_flops'):
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_C = 0
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1]
return flop_A + flop_B + flop_C
def forward(self, inputs):
if self.search_mode == 'basic' : return self.basic_forward(inputs)
elif self.search_mode == 'search': return self.search_forward(inputs)
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) )
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[1], indexes[1], probs[1]) )
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_b)
return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
def basic_forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes*self.expansion:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.search_mode = 'basic'
def get_range(self):
return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
def get_flops(self, channels):
assert len(channels) == 4, 'invalid channels : {:}'.format(channels)
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
if hasattr(self.downsample, 'get_flops'):
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_D = 0
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1]
return flop_A + flop_B + flop_C + flop_D
def forward(self, inputs):
if self.search_mode == 'basic' : return self.basic_forward(inputs)
elif self.search_mode == 'search': return self.search_forward(inputs)
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def basic_forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, bottleneck)
return nn.functional.relu(out, inplace=True)
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) )
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) )
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[2], indexes[2], probs[2]) )
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_1x4)
return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
class SearchWidthCifarResNet(nn.Module):
def __init__(self, block_name, depth, num_classes):
super(SearchWidthCifarResNet, self).__init__()
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
self.message = 'SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.InShape = None
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = 'basic'
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
# parameters for width
self.Ranges = []
self.layer2indexRange = []
for i, layer in enumerate(self.layers):
start_index = len(self.Ranges)
self.Ranges += layer.get_range()
self.layer2indexRange.append( (start_index, len(self.Ranges)) )
assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth)
self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))))
nn.init.normal_(self.width_attentions, 0, 0.01)
self.apply(initialize_resnet)
def arch_parameters(self):
return [self.width_attentions]
def base_parameters(self):
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None: config_dict = config_dict.copy()
#weights = [F.softmax(x, dim=0) for x in self.width_attentions]
channels = [3]
for i, weight in enumerate(self.width_attentions):
if mode == 'genotype':
with torch.no_grad():
probe = nn.functional.softmax(weight, dim=0)
C = self.Ranges[i][ torch.argmax(probe).item() ]
elif mode == 'max':
C = self.Ranges[i][-1]
elif mode == 'fix':
C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
elif mode == 'random':
assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info)
with torch.no_grad():
prob = nn.functional.softmax(weight, dim=0)
approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
for j in range(prob.size(0)):
prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2)
C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ]
else:
raise ValueError('invalid mode : {:}'.format(mode))
channels.append( C )
flop = 0
for i, layer in enumerate(self.layers):
s, e = self.layer2indexRange[i]
xchl = tuple( channels[s:e+1] )
flop+= layer.get_flops(xchl)
# the last fc layer
flop += channels[-1] * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict['xchannels'] = channels
config_dict['super_type'] = 'infer-width'
config_dict['estimated_FLOP'] = flop / 1e6
return flop / 1e6, config_dict
def get_arch_info(self):
string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions))
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.width_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob))
logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:52s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
return string, discrepancy
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, inputs):
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
with torch.no_grad():
selected_widths = selected_widths.cpu()
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
for i, layer in enumerate(self.layers):
selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv]
selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv]
layer_prob = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv]
x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) )
last_channel_idx += layer.num_conv
flops.append( expected_flop )
flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack( [sum(flops)] )
def basic_forward(self, inputs):
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -0,0 +1,482 @@
import math, torch
from collections import OrderedDict
from bisect import bisect_right
import torch.nn as nn
from ..initialization import initialize_resnet
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices
def get_depth_choices(layers):
min_depth = min(layers)
info = {'num': min_depth}
for i, depth in enumerate(layers):
choices = []
for j in range(1, min_depth+1):
choices.append( int( float(depth)*j/min_depth ) )
info[i] = choices
return info
def conv_forward(inputs, conv, choices):
iC = conv.in_channels
fill_size = list(inputs.size())
fill_size[1] = iC - fill_size[1]
filled = torch.zeros(fill_size, device=inputs.device)
xinputs = torch.cat((inputs, filled), dim=1)
outputs = conv(xinputs)
selecteds = [outputs[:,:oC] for oC in choices]
return selecteds
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu, last_max_pool=False):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_width_choices(nOut)
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
#if has_bn : self.bn = nn.BatchNorm2d(nOut)
#else : self.bn = None
self.has_bn = has_bn
self.BNs = nn.ModuleList()
for i, _out in enumerate(self.choices):
self.BNs.append(nn.BatchNorm2d(_out))
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
if last_max_pool: self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
else : self.maxpool = None
self.in_dim = nIn
self.out_dim = nOut
self.search_mode = 'basic'
def get_flops(self, channels, check_range=True, divide=1):
iC, oC = channels
if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None: flops += all_positions / divide
return flops
def get_range(self):
return [self.choices]
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, index, prob = tuple_inputs
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
probability = torch.squeeze(probability)
assert len(index) == 2, 'invalid length : {:}'.format(index)
# compute expected flop
#coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
expected_outC = (self.choices_tensor * probability).sum()
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
if self.avg : out = self.avg( inputs )
else : out = inputs
# convolutional layer
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
# merge
out_channel = max([x.size(1) for x in out_bns])
outA = ChannelWiseInter(out_bns[0], out_channel)
outB = ChannelWiseInter(out_bns[1], out_channel)
out = outA * prob[0] + outB * prob[1]
#out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
if self.relu : out = self.relu( out )
if self.maxpool: out = self.maxpool(out)
return out, expected_outC, expected_flop
def basic_forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.has_bn:out= self.BNs[-1]( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2) , out.size(-1))
if self.maxpool: out = self.maxpool(out)
return out
class ResNetBasicblock(nn.Module):
expansion = 1
num_conv = 2
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True, has_relu=False)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = 'basic'
def get_range(self):
return self.conv_a.get_range() + self.conv_b.get_range()
def get_flops(self, channels):
assert len(channels) == 3, 'invalid channels : {:}'.format(channels)
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
if hasattr(self.downsample, 'get_flops'):
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_C = 0
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1]
return flop_A + flop_B + flop_C
def forward(self, inputs):
if self.search_mode == 'basic' : return self.basic_forward(inputs)
elif self.search_mode == 'search': return self.search_forward(inputs)
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
#import pdb; pdb.set_trace()
out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) )
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[1], indexes[1], probs[1]) )
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_b)
return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
def basic_forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False)
elif inplanes != planes*self.expansion:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True, has_relu=False)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.search_mode = 'basic'
def get_range(self):
return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
def get_flops(self, channels):
assert len(channels) == 4, 'invalid channels : {:}'.format(channels)
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
if hasattr(self.downsample, 'get_flops'):
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_D = 0
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1]
return flop_A + flop_B + flop_C + flop_D
def forward(self, inputs):
if self.search_mode == 'basic' : return self.basic_forward(inputs)
elif self.search_mode == 'search': return self.search_forward(inputs)
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def basic_forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, bottleneck)
return nn.functional.relu(out, inplace=True)
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) )
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) )
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[2], indexes[2], probs[2]) )
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_1x4)
return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
class SearchShapeImagenetResNet(nn.Module):
def __init__(self, block_name, layers, deep_stem, num_classes):
super(SearchShapeImagenetResNet, self).__init__()
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'BasicBlock':
block = ResNetBasicblock
elif block_name == 'Bottleneck':
block = ResNetBottleneck
else:
raise ValueError('invalid block : {:}'.format(block_name))
self.message = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(sum(layers)*block.num_conv, layers)
self.num_classes = num_classes
if not deep_stem:
self.layers = nn.ModuleList( [ ConvBNReLU(3, 64, 7, 2, 3, False, has_avg=False, has_bn=True, has_relu=True, last_max_pool=True) ] )
self.channels = [64]
else:
self.layers = nn.ModuleList( [ ConvBNReLU(3, 32, 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True)
,ConvBNReLU(32,64, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True, last_max_pool=True) ] )
self.channels = [32, 64]
meta_depth_info = get_depth_choices(layers)
self.InShape = None
self.depth_info = OrderedDict()
self.depth_at_i = OrderedDict()
for stage, layer_blocks in enumerate(layers):
cur_block_choices = meta_depth_info[stage]
assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks)
block_choices, xstart = [], len(self.layers)
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 64 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
# added for depth
layer_index = len(self.layers) - 1
if iL + 1 in cur_block_choices: block_choices.append( layer_index )
if iL + 1 == layer_blocks:
self.depth_info[layer_index] = {'choices': block_choices,
'stage' : stage,
'xstart' : xstart}
self.depth_info_list = []
for xend, info in self.depth_info.items():
self.depth_info_list.append( (xend, info) )
xstart, xstage = info['xstart'], info['stage']
for ilayer in range(xstart, xend+1):
idx = bisect_right(info['choices'], ilayer-1)
self.depth_at_i[ilayer] = (xstage, idx)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = 'basic'
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
# parameters for width
self.Ranges = []
self.layer2indexRange = []
for i, layer in enumerate(self.layers):
start_index = len(self.Ranges)
self.Ranges += layer.get_range()
self.layer2indexRange.append( (start_index, len(self.Ranges)) )
self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))))
self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(len(layers), meta_depth_info['num'])))
nn.init.normal_(self.width_attentions, 0, 0.01)
nn.init.normal_(self.depth_attentions, 0, 0.01)
self.apply(initialize_resnet)
def arch_parameters(self, LR=None):
if LR is None:
return [self.width_attentions, self.depth_attentions]
else:
return [
{"params": self.width_attentions, "lr": LR},
{"params": self.depth_attentions, "lr": LR},
]
def base_parameters(self):
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None: config_dict = config_dict.copy()
# select channels
channels = [3]
for i, weight in enumerate(self.width_attentions):
if mode == 'genotype':
with torch.no_grad():
probe = nn.functional.softmax(weight, dim=0)
C = self.Ranges[i][ torch.argmax(probe).item() ]
else:
raise ValueError('invalid mode : {:}'.format(mode))
channels.append( C )
# select depth
if mode == 'genotype':
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
else:
raise ValueError('invalid mode : {:}'.format(mode))
selected_layers = []
for choice, xvalue in zip(choices, self.depth_info_list):
xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1
selected_layers.append(xtemp)
flop = 0
for i, layer in enumerate(self.layers):
s, e = self.layer2indexRange[i]
xchl = tuple( channels[s:e+1] )
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
if xatti <= choices[xstagei]: # leave this depth
flop+= layer.get_flops(xchl)
else:
flop+= 0 # do not use this layer
else:
flop+= layer.get_flops(xchl)
# the last fc layer
flop += channels[-1] * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict['xchannels'] = channels
config_dict['xblocks'] = selected_layers
config_dict['super_type'] = 'infer-shape'
config_dict['estimated_FLOP'] = flop / 1e6
return flop / 1e6, config_dict
def get_arch_info(self):
string = "for depth and width, there are {:} + {:} attention probabilities.".format(len(self.depth_attentions), len(self.width_attentions))
string+= '\n{:}'.format(self.depth_info)
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.depth_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob))
logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:17s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
string += '\n-----------------------------------------------'
for i, att in enumerate(self.width_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob))
logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:52s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
return string, discrepancy
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, inputs):
flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1)
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] )
selected_widths, selected_width_probs = select2withP(self.width_attentions, self.tau)
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
with torch.no_grad():
selected_widths = selected_widths.cpu()
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
feature_maps = []
for i, layer in enumerate(self.layers):
selected_w_index = selected_widths [last_channel_idx: last_channel_idx+layer.num_conv]
selected_w_probs = selected_width_probs[last_channel_idx: last_channel_idx+layer.num_conv]
layer_prob = flop_width_probs [last_channel_idx: last_channel_idx+layer.num_conv]
x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) )
feature_maps.append( x )
last_channel_idx += layer.num_conv
if i in self.depth_info: # aggregate the information
choices = self.depth_info[i]['choices']
xstagei = self.depth_info[i]['stage']
#print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist()))
#for A, W in zip(choices, selected_depth_probs[xstagei]):
# print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W))
possible_tensors = []
max_C = max( feature_maps[A].size(1) for A in choices )
for tempi, A in enumerate(choices):
xtensor = ChannelWiseInter(feature_maps[A], max_C)
possible_tensors.append( xtensor )
weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) )
x = weighted_sum
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop
else:
x_expected_flop = expected_flop
flops.append( x_expected_flop )
flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack( [sum(flops)] )
def basic_forward(self, inputs):
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -0,0 +1,316 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import math, torch
import torch.nn as nn
from ..initialization import initialize_resnet
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices as get_choices
def conv_forward(inputs, conv, choices):
iC = conv.in_channels
fill_size = list(inputs.size())
fill_size[1] = iC - fill_size[1]
filled = torch.zeros(fill_size, device=inputs.device)
xinputs = torch.cat((inputs, filled), dim=1)
outputs = conv(xinputs)
selecteds = [outputs[:,:oC] for oC in choices]
return selecteds
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_choices(nOut)
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
#if has_bn : self.bn = nn.BatchNorm2d(nOut)
#else : self.bn = None
self.has_bn = has_bn
self.BNs = nn.ModuleList()
for i, _out in enumerate(self.choices):
self.BNs.append(nn.BatchNorm2d(_out))
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
self.in_dim = nIn
self.out_dim = nOut
self.search_mode = 'basic'
def get_flops(self, channels, check_range=True, divide=1):
iC, oC = channels
if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None: flops += all_positions / divide
return flops
def get_range(self):
return [self.choices]
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, index, prob = tuple_inputs
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
probability = torch.squeeze(probability)
assert len(index) == 2, 'invalid length : {:}'.format(index)
# compute expected flop
#coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
expected_outC = (self.choices_tensor * probability).sum()
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
if self.avg : out = self.avg( inputs )
else : out = inputs
# convolutional layer
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
# merge
out_channel = max([x.size(1) for x in out_bns])
outA = ChannelWiseInter(out_bns[0], out_channel)
outB = ChannelWiseInter(out_bns[1], out_channel)
out = outA * prob[0] + outB * prob[1]
#out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
if self.relu: out = self.relu( out )
else : out = out
return out, expected_outC, expected_flop
def basic_forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.has_bn:out= self.BNs[-1]( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2) , out.size(-1))
return out
class SimBlock(nn.Module):
expansion = 1
num_conv = 1
def __init__(self, inplanes, planes, stride):
super(SimBlock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = 'basic'
def get_range(self):
return self.conv.get_range()
def get_flops(self, channels):
assert len(channels) == 2, 'invalid channels : {:}'.format(channels)
flop_A = self.conv.get_flops([channels[0], channels[1]])
if hasattr(self.downsample, 'get_flops'):
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_C = 0
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
flop_C = channels[0] * channels[-1] * self.conv.OutShape[0] * self.conv.OutShape[1]
return flop_A + flop_C
def forward(self, inputs):
if self.search_mode == 'basic' : return self.basic_forward(inputs)
elif self.search_mode == 'search': return self.search_forward(inputs)
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1, 'invalid size : {:}, {:}, {:}'.format(indexes.size(), probs.size(), probability.size())
out, expected_next_inC, expected_flop = self.conv( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[-1], indexes[-1], probs[-1]) )
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out)
return nn.functional.relu(out, inplace=True), expected_next_inC, sum([expected_flop, expected_flop_c])
def basic_forward(self, inputs):
basicblock = self.conv(inputs)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
class SearchWidthSimResNet(nn.Module):
def __init__(self, depth, num_classes):
super(SearchWidthSimResNet, self).__init__()
assert (depth - 2) % 3 == 0, 'depth should be one of 5, 8, 11, 14, ... instead of {:}'.format(depth)
layer_blocks = (depth - 2) // 3
self.message = 'SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.InShape = None
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = SimBlock(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = 'basic'
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
# parameters for width
self.Ranges = []
self.layer2indexRange = []
for i, layer in enumerate(self.layers):
start_index = len(self.Ranges)
self.Ranges += layer.get_range()
self.layer2indexRange.append( (start_index, len(self.Ranges)) )
assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth)
self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))))
nn.init.normal_(self.width_attentions, 0, 0.01)
self.apply(initialize_resnet)
def arch_parameters(self):
return [self.width_attentions]
def base_parameters(self):
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None: config_dict = config_dict.copy()
#weights = [F.softmax(x, dim=0) for x in self.width_attentions]
channels = [3]
for i, weight in enumerate(self.width_attentions):
if mode == 'genotype':
with torch.no_grad():
probe = nn.functional.softmax(weight, dim=0)
C = self.Ranges[i][ torch.argmax(probe).item() ]
elif mode == 'max':
C = self.Ranges[i][-1]
elif mode == 'fix':
C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
elif mode == 'random':
assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info)
with torch.no_grad():
prob = nn.functional.softmax(weight, dim=0)
approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
for j in range(prob.size(0)):
prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2)
C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ]
else:
raise ValueError('invalid mode : {:}'.format(mode))
channels.append( C )
flop = 0
for i, layer in enumerate(self.layers):
s, e = self.layer2indexRange[i]
xchl = tuple( channels[s:e+1] )
flop+= layer.get_flops(xchl)
# the last fc layer
flop += channels[-1] * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict['xchannels'] = channels
config_dict['super_type'] = 'infer-width'
config_dict['estimated_FLOP'] = flop / 1e6
return flop / 1e6, config_dict
def get_arch_info(self):
string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions))
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.width_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob))
logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:52s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
return string, discrepancy
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, inputs):
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
with torch.no_grad():
selected_widths = selected_widths.cpu()
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
for i, layer in enumerate(self.layers):
selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv]
selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv]
layer_prob = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv]
x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) )
last_channel_idx += layer.num_conv
flops.append( expected_flop )
flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack( [sum(flops)] )
def basic_forward(self, inputs):
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -0,0 +1,111 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import math, torch
import torch.nn as nn
def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7):
if tau <= 0:
new_logits = logits
probs = nn.functional.softmax(new_logits, dim=1)
else :
while True: # a trick to avoid the gumbels bug
gumbels = -torch.empty_like(logits).exponential_().log()
new_logits = (logits.log_softmax(dim=1) + gumbels) / tau
probs = nn.functional.softmax(new_logits, dim=1)
if (not torch.isinf(gumbels).any()) and (not torch.isinf(probs).any()) and (not torch.isnan(probs).any()): break
if just_prob: return probs
#with torch.no_grad(): # add eps for unexpected torch error
# probs = nn.functional.softmax(new_logits, dim=1)
# selected_index = torch.multinomial(probs + eps, 2, False)
with torch.no_grad(): # add eps for unexpected torch error
probs = probs.cpu()
selected_index = torch.multinomial(probs + eps, num, False).to(logits.device)
selected_logit = torch.gather(new_logits, 1, selected_index)
selcted_probs = nn.functional.softmax(selected_logit, dim=1)
return selected_index, selcted_probs
def ChannelWiseInter(inputs, oC, mode='v2'):
if mode == 'v1':
return ChannelWiseInterV1(inputs, oC)
elif mode == 'v2':
return ChannelWiseInterV2(inputs, oC)
else:
raise ValueError('invalid mode : {:}'.format(mode))
def ChannelWiseInterV1(inputs, oC):
assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size())
def start_index(a, b, c):
return int( math.floor(float(a * c) / b) )
def end_index(a, b, c):
return int( math.ceil(float((a + 1) * c) / b) )
batch, iC, H, W = inputs.size()
outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device)
if iC == oC: return inputs
for ot in range(oC):
istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC)
values = inputs[:, istartT:iendT].mean(dim=1)
outputs[:, ot, :, :] = values
return outputs
def ChannelWiseInterV2(inputs, oC):
assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size())
batch, C, H, W = inputs.size()
if C == oC: return inputs
else : return nn.functional.adaptive_avg_pool3d(inputs, (oC,H,W))
#inputs_5D = inputs.view(batch, 1, C, H, W)
#otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None)
#otputs = otputs_5D.view(batch, oC, H, W)
#otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False)
#return otputs
def linear_forward(inputs, linear):
if linear is None: return inputs
iC = inputs.size(1)
weight = linear.weight[:, :iC]
if linear.bias is None: bias = None
else : bias = linear.bias
return nn.functional.linear(inputs, weight, bias)
def get_width_choices(nOut):
xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
if nOut is None:
return len(xsrange)
else:
Xs = [int(nOut * i) for i in xsrange]
#xs = [ int(nOut * i // 10) for i in range(2, 11)]
#Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1]
Xs = sorted( list( set(Xs) ) )
return tuple(Xs)
def get_depth_choices(nDepth):
if nDepth is None:
return 3
else:
assert nDepth >= 3, 'nDepth should be greater than 2 vs {:}'.format(nDepth)
if nDepth == 1 : return (1, 1, 1)
elif nDepth == 2: return (1, 1, 2)
elif nDepth >= 3:
return (nDepth//3, nDepth*2//3, nDepth)
else:
raise ValueError('invalid Depth : {:}'.format(nDepth))
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1. - drop_prob
mask = x.new_zeros(x.size(0), 1, 1, 1)
mask = mask.bernoulli_(keep_prob)
x = x * (mask / keep_prob)
#x.div_(keep_prob)
#x.mul_(mask)
return x

View File

@@ -0,0 +1,8 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
from .SearchCifarResNet_width import SearchWidthCifarResNet
from .SearchCifarResNet_depth import SearchDepthCifarResNet
from .SearchCifarResNet import SearchShapeCifarResNet
from .SearchSimResNet_width import SearchWidthSimResNet
from .SearchImagenetResNet import SearchShapeImagenetResNet

View File

@@ -0,0 +1,20 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import torch
import torch.nn as nn
from SoftSelect import ChannelWiseInter
if __name__ == '__main__':
tensors = torch.rand((16, 128, 7, 7))
for oc in range(200, 210):
out_v1 = ChannelWiseInter(tensors, oc, 'v1')
out_v2 = ChannelWiseInter(tensors, oc, 'v2')
assert (out_v1 == out_v2).any().item() == 1
for oc in range(48, 160):
out_v1 = ChannelWiseInter(tensors, oc, 'v1')
out_v2 = ChannelWiseInter(tensors, oc, 'v2')
assert (out_v1 == out_v2).any().item() == 1