2020-06-03 13:59:01 +02:00
|
|
|
import os
|
|
|
|
import time
|
|
|
|
import argparse
|
|
|
|
import random
|
|
|
|
import numpy as np
|
|
|
|
from tqdm import trange
|
|
|
|
from statistics import mean
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='NAS Without Training')
|
|
|
|
parser.add_argument('--data_loc', default='../datasets/cifar', type=str, help='dataset folder')
|
|
|
|
parser.add_argument('--api_loc', default='NAS-Bench-201-v1_1-096897.pth',
|
|
|
|
type=str, help='path to API')
|
|
|
|
parser.add_argument('--save_loc', default='results', type=str, help='folder to save results')
|
|
|
|
parser.add_argument('--batch_size', default=256, type=int)
|
|
|
|
parser.add_argument('--GPU', default='0', type=str)
|
|
|
|
parser.add_argument('--seed', default=1, type=int)
|
|
|
|
parser.add_argument('--trainval', action='store_true')
|
|
|
|
parser.add_argument('--dataset', default='cifar10', type=str)
|
|
|
|
parser.add_argument('--n_samples', default=100, type=int)
|
|
|
|
parser.add_argument('--n_runs', default=500, type=int)
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = args.GPU
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
import torchvision.datasets as datasets
|
|
|
|
import torch.optim as optim
|
|
|
|
|
|
|
|
from models import get_cell_based_tiny_net
|
|
|
|
|
|
|
|
# Reproducibility
|
|
|
|
torch.backends.cudnn.deterministic = True
|
|
|
|
torch.backends.cudnn.benchmark = False
|
|
|
|
random.seed(args.seed)
|
|
|
|
np.random.seed(args.seed)
|
|
|
|
torch.manual_seed(args.seed)
|
|
|
|
|
|
|
|
import torchvision.transforms as transforms
|
|
|
|
from datasets import get_datasets
|
|
|
|
from nas_201_api import NASBench201API as API
|
|
|
|
|
|
|
|
def get_batch_jacobian(net, x, target, to, device, args=None):
|
|
|
|
net.zero_grad()
|
|
|
|
|
|
|
|
x.requires_grad_(True)
|
|
|
|
|
|
|
|
_, y = net(x)
|
|
|
|
|
|
|
|
y.backward(torch.ones_like(y))
|
|
|
|
jacob = x.grad.detach()
|
|
|
|
|
|
|
|
return jacob, target.detach()
|
|
|
|
|
|
|
|
|
2020-06-03 16:23:26 +02:00
|
|
|
def eval_score(jacob, labels=None):
|
2020-06-03 13:59:01 +02:00
|
|
|
corrs = np.corrcoef(jacob)
|
|
|
|
v, _ = np.linalg.eig(corrs)
|
|
|
|
k = 1e-5
|
|
|
|
return -np.sum(np.log(v + k) + 1./(v + k))
|
|
|
|
|
|
|
|
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
print(device)
|
|
|
|
THE_START = time.time()
|
|
|
|
api = API(args.api_loc)
|
|
|
|
|
|
|
|
os.makedirs(args.save_loc, exist_ok=True)
|
|
|
|
|
|
|
|
train_data, valid_data, xshape, class_num = get_datasets(args.dataset, args.data_loc, cutout=0)
|
|
|
|
|
|
|
|
if args.dataset == 'cifar10':
|
|
|
|
acc_type = 'ori-test'
|
|
|
|
val_acc_type = 'x-valid'
|
|
|
|
|
|
|
|
else:
|
|
|
|
acc_type = 'x-test'
|
|
|
|
val_acc_type = 'x-valid'
|
|
|
|
|
|
|
|
if args.trainval:
|
|
|
|
cifar_split = load_config('config_utils/cifar-split.txt', None, None)
|
|
|
|
train_split, valid_split = cifar_split.train, cifar_split.valid
|
|
|
|
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
|
|
|
|
num_workers=0, pin_memory=True, sampler= torch.utils.data.sampler.SubsetRandomSampler(train_split))
|
|
|
|
|
|
|
|
else:
|
|
|
|
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True,
|
|
|
|
num_workers=0, pin_memory=True)
|
|
|
|
|
|
|
|
times = []
|
|
|
|
chosen = []
|
|
|
|
acc = []
|
|
|
|
val_acc = []
|
|
|
|
topscores = []
|
|
|
|
|
|
|
|
dset = args.dataset if not args.trainval else 'cifar10-valid'
|
|
|
|
|
|
|
|
order_fn = np.nanargmax
|
|
|
|
|
|
|
|
runs = trange(args.n_runs, desc='acc: ')
|
|
|
|
for N in runs:
|
|
|
|
start = time.time()
|
|
|
|
indices = np.random.randint(0,15625,args.n_samples)
|
|
|
|
scores = []
|
|
|
|
|
|
|
|
for arch in indices:
|
|
|
|
|
|
|
|
data_iterator = iter(train_loader)
|
|
|
|
x, target = next(data_iterator)
|
|
|
|
x, target = x.to(device), target.to(device)
|
|
|
|
|
|
|
|
config = api.get_net_config(arch, args.dataset)
|
|
|
|
config['num_classes'] = 1
|
|
|
|
|
|
|
|
network = get_cell_based_tiny_net(config) # create the network from configuration
|
|
|
|
network = network.to(device)
|
|
|
|
network.eval()
|
|
|
|
|
|
|
|
jacobs, labels= get_batch_jacobian(network, x, target, 1, device, args)
|
|
|
|
jacobs = jacobs.reshape(jacobs.size(0), -1).cpu().numpy()
|
|
|
|
|
|
|
|
try:
|
2020-06-03 16:23:26 +02:00
|
|
|
s = eval_score(jacobs, labels)
|
2020-06-03 13:59:01 +02:00
|
|
|
except Exception as e:
|
|
|
|
print(e)
|
|
|
|
s = np.nan
|
|
|
|
|
|
|
|
scores.append(s)
|
|
|
|
|
|
|
|
best_arch = indices[order_fn(scores)]
|
|
|
|
info = api.query_by_index(best_arch)
|
|
|
|
topscores.append(scores[order_fn(scores)])
|
|
|
|
chosen.append(best_arch)
|
|
|
|
acc.append(info.get_metrics(dset, acc_type)['accuracy'])
|
|
|
|
|
|
|
|
if not args.dataset == 'cifar10' or args.trainval:
|
|
|
|
val_acc.append(info.get_metrics(dset, val_acc_type)['accuracy'])
|
|
|
|
|
|
|
|
times.append(time.time()-start)
|
|
|
|
runs.set_description(f"acc: {mean(acc if not args.trainval else val_acc):.2f}%")
|
|
|
|
|
|
|
|
print(f"Final mean test accuracy: {np.mean(acc)}")
|
|
|
|
if len(val_acc) > 1:
|
|
|
|
print(f"Final mean validation accuracy: {np.mean(val_acc)}")
|
|
|
|
|
|
|
|
state = {'accs': acc,
|
|
|
|
'val_accs': val_acc,
|
|
|
|
'chosen': chosen,
|
|
|
|
'times': times,
|
|
|
|
'topscores': topscores,
|
|
|
|
}
|
|
|
|
|
|
|
|
dset = args.dataset if not args.trainval else 'cifar10-valid'
|
|
|
|
fname = f"{args.save_loc}/{dset}_{args.n_runs}_{args.n_samples}_{args.mc_samples}_{args.alpha}_{args.seed}.t7"
|
|
|
|
torch.save(state, fname)
|