first commit
This commit is contained in:
243
NAS-Bench-201/main_exp/transfer_nag/unnoised_model.py
Normal file
243
NAS-Bench-201/main_exp/transfer_nag/unnoised_model.py
Normal file
@@ -0,0 +1,243 @@
|
||||
######################################################################################
|
||||
# Copyright (c) muhanzhang, D-VAE, NeurIPS 2019 [GitHub D-VAE]
|
||||
# Modified by Hayeon Lee, Eunyoung Hyung, MetaD2A, ICLR2021, 2021. 03 [GitHub MetaD2A]
|
||||
######################################################################################
|
||||
import torch
|
||||
from torch import nn
|
||||
from set_encoder.setenc_models import SetPool
|
||||
|
||||
|
||||
class MetaSurrogateUnnoisedModel(nn.Module):
|
||||
def __init__(self, args, graph_config):
|
||||
super(MetaSurrogateUnnoisedModel, self).__init__()
|
||||
self.max_n = graph_config['max_n'] # maximum number of vertices
|
||||
self.nvt = args.nvt # number of vertex types
|
||||
self.START_TYPE = graph_config['START_TYPE']
|
||||
self.END_TYPE = graph_config['END_TYPE']
|
||||
self.hs = args.hs # hidden state size of each vertex
|
||||
self.nz = args.nz # size of latent representation z
|
||||
self.gs = args.hs # size of graph state
|
||||
self.bidir = True # whether to use bidirectional encoding
|
||||
self.vid = True
|
||||
self.device = None
|
||||
self.input_type = 'DG'
|
||||
self.num_sample = args.num_sample
|
||||
|
||||
if self.vid:
|
||||
self.vs = self.hs + self.max_n # vertex state size = hidden state + vid
|
||||
else:
|
||||
self.vs = self.hs
|
||||
|
||||
# 0. encoding-related
|
||||
self.grue_forward = nn.GRUCell(self.nvt, self.hs) # encoder GRU
|
||||
self.grue_backward = nn.GRUCell(
|
||||
self.nvt, self.hs) # backward encoder GRU
|
||||
self.fc1 = nn.Linear(self.gs, self.nz) # latent mean
|
||||
self.fc2 = nn.Linear(self.gs, self.nz) # latent logvar
|
||||
|
||||
# 2. gate-related
|
||||
self.gate_forward = nn.Sequential(
|
||||
nn.Linear(self.vs, self.hs),
|
||||
nn.Sigmoid()
|
||||
)
|
||||
self.gate_backward = nn.Sequential(
|
||||
nn.Linear(self.vs, self.hs),
|
||||
nn.Sigmoid()
|
||||
)
|
||||
self.mapper_forward = nn.Sequential(
|
||||
nn.Linear(self.vs, self.hs, bias=False),
|
||||
) # disable bias to ensure padded zeros also mapped to zeros
|
||||
self.mapper_backward = nn.Sequential(
|
||||
nn.Linear(self.vs, self.hs, bias=False),
|
||||
)
|
||||
|
||||
# 3. bidir-related, to unify sizes
|
||||
if self.bidir:
|
||||
self.hv_unify = nn.Sequential(
|
||||
nn.Linear(self.hs * 2, self.hs),
|
||||
)
|
||||
self.hg_unify = nn.Sequential(
|
||||
nn.Linear(self.gs * 2, self.gs),
|
||||
)
|
||||
|
||||
# 4. other
|
||||
self.relu = nn.ReLU()
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
self.tanh = nn.Tanh()
|
||||
self.logsoftmax1 = nn.LogSoftmax(1)
|
||||
|
||||
# 6. predictor
|
||||
np = self.gs
|
||||
self.intra_setpool = SetPool(dim_input=512,
|
||||
num_outputs=1,
|
||||
dim_output=self.nz,
|
||||
dim_hidden=self.nz,
|
||||
mode='sabPF')
|
||||
self.inter_setpool = SetPool(dim_input=self.nz,
|
||||
num_outputs=1,
|
||||
dim_output=self.nz,
|
||||
dim_hidden=self.nz,
|
||||
mode='sabPF')
|
||||
self.set_fc = nn.Sequential(
|
||||
nn.Linear(512, self.nz),
|
||||
nn.ReLU())
|
||||
|
||||
input_dim = 0
|
||||
if 'D' in self.input_type:
|
||||
input_dim += self.nz
|
||||
if 'G' in self.input_type:
|
||||
input_dim += self.nz
|
||||
|
||||
self.pred_fc = nn.Sequential(
|
||||
nn.Linear(input_dim, self.hs),
|
||||
nn.Tanh(),
|
||||
nn.Linear(self.hs, 1)
|
||||
)
|
||||
self.mseloss = nn.MSELoss(reduction='sum')
|
||||
|
||||
def predict(self, D_mu, G_mu):
|
||||
input_vec = []
|
||||
if 'D' in self.input_type:
|
||||
input_vec.append(D_mu)
|
||||
if 'G' in self.input_type:
|
||||
input_vec.append(G_mu)
|
||||
input_vec = torch.cat(input_vec, dim=1)
|
||||
return self.pred_fc(input_vec)
|
||||
|
||||
def get_device(self):
|
||||
if self.device is None:
|
||||
self.device = next(self.parameters()).device
|
||||
return self.device
|
||||
|
||||
def _get_zeros(self, n, length):
|
||||
# get a zero hidden state
|
||||
return torch.zeros(n, length).to(self.get_device())
|
||||
|
||||
def _get_zero_hidden(self, n=1):
|
||||
return self._get_zeros(n, self.hs) # get a zero hidden state
|
||||
|
||||
def _one_hot(self, idx, length):
|
||||
if type(idx) in [list, range]:
|
||||
if idx == []:
|
||||
return None
|
||||
idx = torch.LongTensor(idx).unsqueeze(0).t()
|
||||
x = torch.zeros((len(idx), length)).scatter_(
|
||||
1, idx, 1).to(self.get_device())
|
||||
else:
|
||||
idx = torch.LongTensor([idx]).unsqueeze(0)
|
||||
x = torch.zeros((1, length)).scatter_(
|
||||
1, idx, 1).to(self.get_device())
|
||||
return x
|
||||
|
||||
def _gated(self, h, gate, mapper):
|
||||
return gate(h) * mapper(h)
|
||||
|
||||
def _collate_fn(self, G):
|
||||
return [g.copy() for g in G]
|
||||
|
||||
def _propagate_to(self, G, v, propagator, H=None, reverse=False, gate=None, mapper=None):
|
||||
# propagate messages to vertex index v for all graphs in G
|
||||
# return the new messages (states) at v
|
||||
G = [g for g in G if g.vcount() > v]
|
||||
if len(G) == 0:
|
||||
return
|
||||
if H is not None:
|
||||
idx = [i for i, g in enumerate(G) if g.vcount() > v]
|
||||
H = H[idx]
|
||||
v_types = [g.vs[v]['type'] for g in G]
|
||||
X = self._one_hot(v_types, self.nvt)
|
||||
if reverse:
|
||||
H_name = 'H_backward' # name of the hidden states attribute
|
||||
H_pred = [[g.vs[x][H_name] for x in g.successors(v)] for g in G]
|
||||
if self.vid:
|
||||
vids = [self._one_hot(g.successors(v), self.max_n) for g in G]
|
||||
gate, mapper = self.gate_backward, self.mapper_backward
|
||||
else:
|
||||
H_name = 'H_forward' # name of the hidden states attribute
|
||||
H_pred = [[g.vs[x][H_name] for x in g.predecessors(v)] for g in G]
|
||||
if self.vid:
|
||||
vids = [self._one_hot(g.predecessors(v), self.max_n)
|
||||
for g in G]
|
||||
if gate is None:
|
||||
gate, mapper = self.gate_forward, self.mapper_forward
|
||||
if self.vid:
|
||||
H_pred = [[torch.cat([x[i], y[i:i + 1]], 1)
|
||||
for i in range(len(x))] for x, y in zip(H_pred, vids)]
|
||||
# if h is not provided, use gated sum of v's predecessors' states as the input hidden state
|
||||
if H is None:
|
||||
# maximum number of predecessors
|
||||
max_n_pred = max([len(x) for x in H_pred])
|
||||
if max_n_pred == 0:
|
||||
H = self._get_zero_hidden(len(G))
|
||||
else:
|
||||
H_pred = [torch.cat(h_pred +
|
||||
[self._get_zeros(max_n_pred - len(h_pred), self.vs)], 0).unsqueeze(0)
|
||||
for h_pred in H_pred] # pad all to same length
|
||||
H_pred = torch.cat(H_pred, 0) # batch * max_n_pred * vs
|
||||
H = self._gated(H_pred, gate, mapper).sum(1) # batch * hs
|
||||
Hv = propagator(X, H)
|
||||
for i, g in enumerate(G):
|
||||
g.vs[v][H_name] = Hv[i:i + 1]
|
||||
return Hv
|
||||
|
||||
def _propagate_from(self, G, v, propagator, H0=None, reverse=False):
|
||||
# perform a series of propagation_to steps starting from v following a topo order
|
||||
# assume the original vertex indices are in a topological order
|
||||
if reverse:
|
||||
prop_order = range(v, -1, -1)
|
||||
else:
|
||||
prop_order = range(v, self.max_n)
|
||||
Hv = self._propagate_to(G, v, propagator, H0,
|
||||
reverse=reverse) # the initial vertex
|
||||
for v_ in prop_order[1:]:
|
||||
self._propagate_to(G, v_, propagator, reverse=reverse)
|
||||
return Hv
|
||||
|
||||
def _get_graph_state(self, G, decode=False):
|
||||
# get the graph states
|
||||
# when decoding, use the last generated vertex's state as the graph state
|
||||
# when encoding, use the ending vertex state or unify the starting and ending vertex states
|
||||
Hg = []
|
||||
for g in G:
|
||||
hg = g.vs[g.vcount() - 1]['H_forward']
|
||||
if self.bidir and not decode: # decoding never uses backward propagation
|
||||
hg_b = g.vs[0]['H_backward']
|
||||
hg = torch.cat([hg, hg_b], 1)
|
||||
Hg.append(hg)
|
||||
Hg = torch.cat(Hg, 0)
|
||||
if self.bidir and not decode:
|
||||
Hg = self.hg_unify(Hg)
|
||||
return Hg
|
||||
|
||||
def set_encode(self, X):
|
||||
proto_batch = []
|
||||
for x in X:
|
||||
cls_protos = self.intra_setpool(
|
||||
x.view(-1, self.num_sample, 512)).squeeze(1)
|
||||
proto_batch.append(
|
||||
self.inter_setpool(cls_protos.unsqueeze(0)))
|
||||
v = torch.stack(proto_batch).squeeze()
|
||||
return v
|
||||
|
||||
def graph_encode(self, G):
|
||||
# encode graphs G into latent vectors
|
||||
if type(G) != list:
|
||||
G = [G]
|
||||
self._propagate_from(G, 0, self.grue_forward, H0=self._get_zero_hidden(len(G)),
|
||||
reverse=False)
|
||||
if self.bidir:
|
||||
self._propagate_from(G, self.max_n - 1, self.grue_backward,
|
||||
H0=self._get_zero_hidden(len(G)), reverse=True)
|
||||
Hg = self._get_graph_state(G)
|
||||
mu = self.fc1(Hg)
|
||||
# logvar = self.fc2(Hg)
|
||||
return mu # , logvar
|
||||
|
||||
def reparameterize(self, mu, logvar, eps_scale=0.01):
|
||||
# return z ~ N(mu, std)
|
||||
if self.training:
|
||||
std = logvar.mul(0.5).exp_()
|
||||
eps = torch.randn_like(std) * eps_scale
|
||||
return eps.mul(std).add_(mu)
|
||||
else:
|
||||
return mu
|
Reference in New Issue
Block a user