first commit

This commit is contained in:
CownowAn
2024-03-15 14:38:51 +00:00
commit bc2ed1304f
321 changed files with 44802 additions and 0 deletions

View File

@@ -0,0 +1,5 @@
###########################################################################################
# Copyright (c) Hayeon Lee, Eunyoung Hyung [GitHub MetaD2A], 2021
# Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets, ICLR 2021
###########################################################################################
from .db_ofa import DatabaseOFA

View File

@@ -0,0 +1,57 @@
######################################################################################
# Copyright (c) Han Cai, Once for All, ICLR 2020 [GitHub OFA]
# Modified by Hayeon Lee, Eunyoung Hyung, MetaD2A, ICLR2021, 2021. 03 [GitHub MetaD2A]
######################################################################################
import numpy as np
import torch
__all__ = ['DataProvider']
class DataProvider:
SUB_SEED = 937162211 # random seed for sampling subset
VALID_SEED = 2147483647 # random seed for the validation set
@staticmethod
def name():
""" Return name of the dataset """
raise NotImplementedError
@property
def data_shape(self):
""" Return shape as python list of one data entry """
raise NotImplementedError
@property
def n_classes(self):
""" Return `int` of num classes """
raise NotImplementedError
@property
def save_path(self):
""" local path to save the data """
raise NotImplementedError
@property
def data_url(self):
""" link to download the data """
raise NotImplementedError
@staticmethod
def random_sample_valid_set(train_size, valid_size):
assert train_size > valid_size
g = torch.Generator()
g.manual_seed(DataProvider.VALID_SEED) # set random seed before sampling validation set
rand_indexes = torch.randperm(train_size, generator=g).tolist()
valid_indexes = rand_indexes[:valid_size]
train_indexes = rand_indexes[valid_size:]
return train_indexes, valid_indexes
@staticmethod
def labels_to_one_hot(n_classes, labels):
new_labels = np.zeros((labels.shape[0], n_classes), dtype=np.float32)
new_labels[range(labels.shape[0]), labels] = np.ones(labels.shape)
return new_labels

View File

@@ -0,0 +1,107 @@
import os
import torch
import time
import copy
import glob
from .imagenet import ImagenetDataProvider
from .imagenet_loader import ImagenetRunConfig
from .run_manager import RunManager
from ofa.model_zoo import ofa_net
class DatabaseOFA:
def __init__(self, args, predictor=None):
self.path = f'{args.data_path}/{args.model_name}'
self.model_name = args.model_name
self.index = args.index
self.args = args
self.predictor = predictor
ImagenetDataProvider.DEFAULT_PATH = args.imgnet
if not os.path.exists(self.path):
os.makedirs(self.path)
def make_db(self):
self.ofa_network = ofa_net('ofa_mbv3_d234_e346_k357_w1.0', pretrained=True)
self.run_config = ImagenetRunConfig(test_batch_size=self.args.batch_size,
n_worker=20)
database = []
st_time = time.time()
f = open(f'{self.path}/txt_{self.index}.txt', 'w')
for dn in range(10000):
best_pp = -1
best_info = None
dls = None
with torch.no_grad():
if self.model_name == 'generator':
for i in range(10):
net_setting = self.ofa_network.sample_active_subnet()
subnet = self.ofa_network.get_active_subnet(preserve_weight=True)
if i == 0:
run_manager = RunManager('.tmp/eval_subnet', self.args, subnet,
self.run_config, init=False, pp=self.predictor)
self.run_config.data_provider.assign_active_img_size(224)
dls = {j: copy.deepcopy(run_manager.data_loader) for j in range(1, 10)}
else:
run_manager = RunManager('.tmp/eval_subnet', self.args, subnet,
self.run_config,
init=False, data_loader=dls[i], pp=self.predictor)
run_manager.reset_running_statistics(net=subnet)
loss, (top1, top5), pred_acc \
= run_manager.validate(net=subnet, net_setting=net_setting)
if best_pp < pred_acc:
best_pp = pred_acc
print('[%d] class=%d,\t loss=%.5f,\t top1=%.1f,\t top5=%.1f' % (
dn, len(run_manager.cls_lst), loss, top1, top5))
info_dict = {'loss': loss,
'top1': top1,
'top5': top5,
'net': net_setting,
'class': run_manager.cls_lst,
'params': run_manager.net_info['params'],
'flops': run_manager.net_info['flops'],
'test_transform': run_manager.test_transform
}
best_info = info_dict
elif self.model_name == 'predictor':
net_setting = self.ofa_network.sample_active_subnet()
subnet = self.ofa_network.get_active_subnet(preserve_weight=True)
run_manager = RunManager('.tmp/eval_subnet', self.args, subnet, self.run_config, init=False)
self.run_config.data_provider.assign_active_img_size(224)
run_manager.reset_running_statistics(net=subnet)
loss, (top1, top5), _ = run_manager.validate(net=subnet)
print('[%d] class=%d,\t loss=%.5f,\t top1=%.1f,\t top5=%.1f' % (
dn, len(run_manager.cls_lst), loss, top1, top5))
best_info = {'loss': loss,
'top1': top1,
'top5': top5,
'net': net_setting,
'class': run_manager.cls_lst,
'params': run_manager.net_info['params'],
'flops': run_manager.net_info['flops'],
'test_transform': run_manager.test_transform
}
database.append(best_info)
if (len(database)) % 10 == 0:
msg = f'{(time.time() - st_time) / 60.0:0.2f}(min) save {len(database)} database, {self.index} id'
print(msg)
f.write(msg + '\n')
f.flush()
torch.save(database, f'{self.path}/database_{self.index}.pt')
def collect_db(self):
if not os.path.exists(self.path + f'/processed'):
os.makedirs(self.path + f'/processed')
database = []
dlst = glob.glob(self.path + '/*.pt')
for filepath in dlst:
database += torch.load(filepath)
assert len(database) != 0
print(f'The number of database: {len(database)}')
torch.save(database, self.path + f'/processed/collected_database.pt')

View File

@@ -0,0 +1,240 @@
######################################################################################
# Copyright (c) Han Cai, Once for All, ICLR 2020 [GitHub OFA]
# Modified by Hayeon Lee, Eunyoung Hyung, MetaD2A, ICLR2021, 2021. 03 [GitHub MetaD2A]
######################################################################################
import warnings
import os
import torch
import math
import numpy as np
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from ofa_local.imagenet_classification.data_providers.base_provider import DataProvider
from ofa_local.utils.my_dataloader import MyRandomResizedCrop, MyDistributedSampler
from .metaloader import MetaImageNetDataset, EpisodeSampler, MetaDataLoader
__all__ = ['ImagenetDataProvider']
class ImagenetDataProvider(DataProvider):
DEFAULT_PATH = '/dataset/imagenet'
def __init__(self, save_path=None, train_batch_size=256, test_batch_size=512, valid_size=None, n_worker=32,
resize_scale=0.08, distort_color=None, image_size=224,
num_replicas=None, rank=None):
warnings.filterwarnings('ignore')
self._save_path = save_path
self.image_size = image_size # int or list of int
self.distort_color = 'None' if distort_color is None else distort_color
self.resize_scale = resize_scale
self._valid_transform_dict = {}
if not isinstance(self.image_size, int):
from ofa.utils.my_dataloader import MyDataLoader
assert isinstance(self.image_size, list)
self.image_size.sort() # e.g., 160 -> 224
MyRandomResizedCrop.IMAGE_SIZE_LIST = self.image_size.copy()
MyRandomResizedCrop.ACTIVE_SIZE = max(self.image_size)
for img_size in self.image_size:
self._valid_transform_dict[img_size] = self.build_valid_transform(img_size)
self.active_img_size = max(self.image_size) # active resolution for test
valid_transforms = self._valid_transform_dict[self.active_img_size]
train_loader_class = MyDataLoader # randomly sample image size for each batch of training image
else:
self.active_img_size = self.image_size
valid_transforms = self.build_valid_transform()
train_loader_class = torch.utils.data.DataLoader
########################## modification ########################
train_dataset = self.train_dataset(self.build_train_transform())
if valid_size is not None:
if not isinstance(valid_size, int):
assert isinstance(valid_size, float) and 0 < valid_size < 1
valid_size = int(len(train_dataset) * valid_size)
valid_dataset = self.train_dataset(valid_transforms)
train_indexes, valid_indexes = self.random_sample_valid_set(len(train_dataset), valid_size)
if num_replicas is not None:
train_sampler = MyDistributedSampler(train_dataset, num_replicas, rank, True, np.array(train_indexes))
valid_sampler = MyDistributedSampler(valid_dataset, num_replicas, rank, True, np.array(valid_indexes))
else:
train_sampler = torch.utils.data.sampler.SubsetRandomSampler(train_indexes)
valid_sampler = torch.utils.data.sampler.SubsetRandomSampler(valid_indexes)
self.train = train_loader_class(
train_dataset, batch_size=train_batch_size, sampler=train_sampler,
num_workers=n_worker, pin_memory=True,
)
self.valid = torch.utils.data.DataLoader(
valid_dataset, batch_size=test_batch_size, sampler=valid_sampler,
num_workers=n_worker, pin_memory=True,
)
else:
if num_replicas is not None:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, num_replicas, rank)
self.train = train_loader_class(
train_dataset, batch_size=train_batch_size, sampler=train_sampler,
num_workers=n_worker, pin_memory=True
)
else:
self.train = train_loader_class(
train_dataset, batch_size=train_batch_size, shuffle=True, num_workers=n_worker, pin_memory=True,
)
self.valid = None
# test_dataset = self.test_dataset(valid_transforms)
test_dataset = self.meta_test_dataset(valid_transforms)
if num_replicas is not None:
test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset, num_replicas, rank)
self.test = torch.utils.data.DataLoader(
test_dataset, batch_size=test_batch_size, sampler=test_sampler, num_workers=n_worker, pin_memory=True,
)
else:
# self.test = torch.utils.data.DataLoader(
# test_dataset, batch_size=test_batch_size, shuffle=True, num_workers=n_worker, pin_memory=True,
# )
sampler = EpisodeSampler(
max_way=1000, query=10, ylst=test_dataset.ylst)
self.test = MetaDataLoader(dataset=test_dataset,
sampler=sampler,
batch_size=test_batch_size,
shuffle=False,
num_workers=4)
if self.valid is None:
self.valid = self.test
@staticmethod
def name():
return 'imagenet'
@property
def data_shape(self):
return 3, self.active_img_size, self.active_img_size # C, H, W
@property
def n_classes(self):
return 1000
@property
def save_path(self):
if self._save_path is None:
self._save_path = self.DEFAULT_PATH
if not os.path.exists(self._save_path):
self._save_path = os.path.expanduser('~/dataset/imagenet')
return self._save_path
@property
def data_url(self):
raise ValueError('unable to download %s' % self.name())
def train_dataset(self, _transforms):
return datasets.ImageFolder(self.train_path, _transforms)
def test_dataset(self, _transforms):
return datasets.ImageFolder(self.valid_path, _transforms)
def meta_test_dataset(self, _transforms):
return MetaImageNetDataset('val', max_way=1000, query=10,
dpath='/w14/dataset/ILSVRC2012', transform=_transforms)
@property
def train_path(self):
return os.path.join(self.save_path, 'train')
@property
def valid_path(self):
return os.path.join(self.save_path, 'val')
@property
def normalize(self):
return transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def build_train_transform(self, image_size=None, print_log=True):
if image_size is None:
image_size = self.image_size
if print_log:
print('Color jitter: %s, resize_scale: %s, img_size: %s' %
(self.distort_color, self.resize_scale, image_size))
if isinstance(image_size, list):
resize_transform_class = MyRandomResizedCrop
print('Use MyRandomResizedCrop: %s, \t %s' % MyRandomResizedCrop.get_candidate_image_size(),
'sync=%s, continuous=%s' % (MyRandomResizedCrop.SYNC_DISTRIBUTED, MyRandomResizedCrop.CONTINUOUS))
else:
resize_transform_class = transforms.RandomResizedCrop
# random_resize_crop -> random_horizontal_flip
train_transforms = [
resize_transform_class(image_size, scale=(self.resize_scale, 1.0)),
transforms.RandomHorizontalFlip(),
]
# color augmentation (optional)
color_transform = None
if self.distort_color == 'torch':
color_transform = transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1)
elif self.distort_color == 'tf':
color_transform = transforms.ColorJitter(brightness=32. / 255., saturation=0.5)
if color_transform is not None:
train_transforms.append(color_transform)
train_transforms += [
transforms.ToTensor(),
self.normalize,
]
train_transforms = transforms.Compose(train_transforms)
return train_transforms
def build_valid_transform(self, image_size=None):
if image_size is None:
image_size = self.active_img_size
return transforms.Compose([
transforms.Resize(int(math.ceil(image_size / 0.875))),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
self.normalize,
])
def assign_active_img_size(self, new_img_size):
self.active_img_size = new_img_size
if self.active_img_size not in self._valid_transform_dict:
self._valid_transform_dict[self.active_img_size] = self.build_valid_transform()
# change the transform of the valid and test set
self.valid.dataset.transform = self._valid_transform_dict[self.active_img_size]
self.test.dataset.transform = self._valid_transform_dict[self.active_img_size]
def build_sub_train_loader(self, n_images, batch_size, num_worker=None, num_replicas=None, rank=None):
# used for resetting BN running statistics
if self.__dict__.get('sub_train_%d' % self.active_img_size, None) is None:
if num_worker is None:
num_worker = self.train.num_workers
n_samples = len(self.train.dataset)
g = torch.Generator()
g.manual_seed(DataProvider.SUB_SEED)
rand_indexes = torch.randperm(n_samples, generator=g).tolist()
new_train_dataset = self.train_dataset(
self.build_train_transform(image_size=self.active_img_size, print_log=False))
chosen_indexes = rand_indexes[:n_images]
if num_replicas is not None:
sub_sampler = MyDistributedSampler(new_train_dataset, num_replicas, rank, True, np.array(chosen_indexes))
else:
sub_sampler = torch.utils.data.sampler.SubsetRandomSampler(chosen_indexes)
sub_data_loader = torch.utils.data.DataLoader(
new_train_dataset, batch_size=batch_size, sampler=sub_sampler,
num_workers=num_worker, pin_memory=True,
)
self.__dict__['sub_train_%d' % self.active_img_size] = []
for images, labels in sub_data_loader:
self.__dict__['sub_train_%d' % self.active_img_size].append((images, labels))
return self.__dict__['sub_train_%d' % self.active_img_size]

View File

@@ -0,0 +1,40 @@
from .imagenet import ImagenetDataProvider
from ofa_local.imagenet_classification.run_manager import RunConfig
__all__ = ['ImagenetRunConfig']
class ImagenetRunConfig(RunConfig):
def __init__(self, n_epochs=150, init_lr=0.05, lr_schedule_type='cosine', lr_schedule_param=None,
dataset='imagenet', train_batch_size=256, test_batch_size=500, valid_size=None,
opt_type='sgd', opt_param=None, weight_decay=4e-5, label_smoothing=0.1, no_decay_keys=None,
mixup_alpha=None, model_init='he_fout', validation_frequency=1, print_frequency=10,
n_worker=32, resize_scale=0.08, distort_color='tf', image_size=224, **kwargs):
super(ImagenetRunConfig, self).__init__(
n_epochs, init_lr, lr_schedule_type, lr_schedule_param,
dataset, train_batch_size, test_batch_size, valid_size,
opt_type, opt_param, weight_decay, label_smoothing, no_decay_keys,
mixup_alpha,
model_init, validation_frequency, print_frequency
)
self.n_worker = n_worker
self.resize_scale = resize_scale
self.distort_color = distort_color
self.image_size = image_size
@property
def data_provider(self):
if self.__dict__.get('_data_provider', None) is None:
if self.dataset == ImagenetDataProvider.name():
DataProviderClass = ImagenetDataProvider
else:
raise NotImplementedError
self.__dict__['_data_provider'] = DataProviderClass(
train_batch_size=self.train_batch_size, test_batch_size=self.test_batch_size,
valid_size=self.valid_size, n_worker=self.n_worker, resize_scale=self.resize_scale,
distort_color=self.distort_color, image_size=self.image_size,
)
return self.__dict__['_data_provider']

View File

@@ -0,0 +1,210 @@
from torch.utils.data.sampler import Sampler
import os
import random
from PIL import Image
from collections import defaultdict
import torch
from torch.utils.data import Dataset, DataLoader
import glob
class RandCycleIter:
'''
Return data_list per class
Shuffle the returning order after one epoch
'''
def __init__ (self, data, shuffle=True):
self.data_list = list(data)
self.length = len(self.data_list)
self.i = self.length - 1
self.shuffle = shuffle
def __iter__ (self):
return self
def __next__ (self):
self.i += 1
if self.i == self.length:
self.i = 0
if self.shuffle:
random.shuffle(self.data_list)
return self.data_list[self.i]
class EpisodeSampler(Sampler):
def __init__(self, max_way, query, ylst):
self.max_way = max_way
self.query = query
self.ylst = ylst
# self.n_epi = n_epi
clswise_xidx = defaultdict(list)
for i, y in enumerate(ylst):
clswise_xidx[y].append(i)
self.cws_xidx_iter = [RandCycleIter(cxidx, shuffle=True)
for cxidx in clswise_xidx.values()]
self.n_cls = len(clswise_xidx)
self.create_episode()
def __iter__ (self):
return self.get_index()
def __len__ (self):
return self.get_len()
def create_episode(self):
self.way = torch.randperm(int(self.max_way/10.0)-1)[0] * 10 + 10
cls_lst = torch.sort(torch.randperm(self.max_way)[:self.way])[0]
self.cls_itr = iter(cls_lst)
self.cls_lst = cls_lst
def get_len(self):
return self.way * self.query
def get_index(self):
x_itr = self.cws_xidx_iter
i, j = 0, 0
while i < self.query * self.way:
if j >= self.query:
j = 0
if j == 0:
cls_idx = next(self.cls_itr).item()
bb = [x_itr[cls_idx]] * self.query
didx = next(zip(*bb))
yield didx[j]
# yield (didx[j], self.way)
i += 1; j += 1
class MetaImageNetDataset(Dataset):
def __init__(self, mode='val',
max_way=1000, query=10,
dpath='/w14/dataset/ILSVRC2012', transform=None):
self.dpath = dpath
self.transform = transform
self.mode = mode
self.max_way = max_way
self.query = query
classes, class_to_idx = self._find_classes(dpath+'/'+mode)
self.classes, self.class_to_idx = classes, class_to_idx
# self.class_folder_lst = \
# glob.glob(dpath+'/'+mode+'/*')
# ## sorting alphabetically
# self.class_folder_lst = sorted(self.class_folder_lst)
self.file_path_lst, self.ylst = [], []
for cls in classes:
xlst = glob.glob(dpath+'/'+mode+'/'+cls+'/*')
self.file_path_lst += xlst[:self.query]
y = class_to_idx[cls]
self.ylst += [y] * len(xlst[:self.query])
# for y, cls in enumerate(self.class_folder_lst):
# xlst = glob.glob(cls+'/*')
# self.file_path_lst += xlst[:self.query]
# self.ylst += [y] * len(xlst[:self.query])
# # self.file_path_lst += [xlst[_] for _ in
# # torch.randperm(len(xlst))[:self.query]]
# # self.ylst += [cls.split('/')[-1]] * len(xlst)
self.way_idx = 0
self.x_idx = 0
self.way = 2
self.cls_lst = None
def __len__(self):
return self.way * self.query
def __getitem__(self, index):
# if self.way != index[1]:
# self.way = index[1]
# index = index[0]
x = Image.open(
self.file_path_lst[index]).convert('RGB')
if self.transform is not None:
x = self.transform(x)
cls_name = self.ylst[index]
y = self.cls_lst.index(cls_name)
# y = self.way_idx
# self.x_idx += 1
# if self.x_idx == self.query:
# self.way_idx += 1
# self.x_idx = 0
# if self.way_idx == self.way:
# self.way_idx = 0
# self.x_idx = 0
return x, y #, cls_name # y # cls_name #y
def _find_classes(self, dir: str):
"""
Finds the class folders in a dataset.
Args:
dir (string): Root directory path.
Returns:
tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary.
Ensures:
No class is a subdirectory of another.
"""
classes = [d.name for d in os.scandir(dir) if d.is_dir()]
classes.sort()
class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
return classes, class_to_idx
class MetaDataLoader(DataLoader):
def __init__(self,
dataset, sampler, batch_size, shuffle, num_workers):
super(MetaDataLoader, self).__init__(
dataset=dataset,
sampler=sampler,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers)
def create_episode(self):
self.sampler.create_episode()
self.dataset.way = self.sampler.way
self.dataset.cls_lst = self.sampler.cls_lst.tolist()
def get_cls_idx(self):
return self.sampler.cls_lst
def get_loader(mode='val', way=10, query=10,
n_epi=100, dpath='/w14/dataset/ILSVRC2012',
transform=None):
trans = get_transforms(mode)
dataset = MetaImageNetDataset(mode, way, query, dpath, trans)
sampler = EpisodeSampler(
way, query, n_epi, dataset.ylst)
dataset.way = sampler.way
dataset.cls_lst = sampler.cls_lst
loader = MetaDataLoader(dataset=dataset,
sampler=sampler,
batch_size=10,
shuffle=False,
num_workers=4)
return loader
# trloader = get_loader()
# trloader.create_episode()
# print(len(trloader))
# print(trloader.dataset.way)
# print(trloader.sampler.way)
# for i, episode in enumerate(trloader, start=1):
# print(episode[2])

View File

@@ -0,0 +1,302 @@
######################################################################################
# Copyright (c) Han Cai, Once for All, ICLR 2020 [GitHub OFA]
# Modified by Hayeon Lee, Eunyoung Hyung, MetaD2A, ICLR2021, 2021. 03 [GitHub MetaD2A]
######################################################################################
import os
import json
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
from tqdm import tqdm
from utils import decode_ofa_mbv3_to_igraph
from ofa_local.utils import get_net_info, cross_entropy_loss_with_soft_target, cross_entropy_with_label_smoothing
from ofa_local.utils import AverageMeter, accuracy, write_log, mix_images, mix_labels, init_models
__all__ = ['RunManager']
import torchvision.models as models
class RunManager:
def __init__(self, path, args, net, run_config, init=True, measure_latency=None,
no_gpu=False, data_loader=None, pp=None):
self.path = path
self.mode = args.model_name
self.net = net
self.run_config = run_config
self.best_acc = 0
self.start_epoch = 0
os.makedirs(self.path, exist_ok=True)
# dataloader
if data_loader is not None:
self.data_loader = data_loader
cls_lst = self.data_loader.get_cls_idx()
self.cls_lst = cls_lst
else:
self.data_loader = self.run_config.valid_loader
self.data_loader.create_episode()
cls_lst = self.data_loader.get_cls_idx()
self.cls_lst = cls_lst
state_dict = self.net.classifier.state_dict()
new_state_dict = {'weight': state_dict['linear.weight'][cls_lst],
'bias': state_dict['linear.bias'][cls_lst]}
self.net.classifier = nn.Linear(1280, len(cls_lst), bias=True)
self.net.classifier.load_state_dict(new_state_dict)
# move network to GPU if available
if torch.cuda.is_available() and (not no_gpu):
self.device = torch.device('cuda:0')
self.net = self.net.to(self.device)
cudnn.benchmark = True
else:
self.device = torch.device('cpu')
# net info
net_info = get_net_info(
self.net, self.run_config.data_provider.data_shape, measure_latency, False)
self.net_info = net_info
self.test_transform = self.run_config.data_provider.test.dataset.transform
# criterion
if isinstance(self.run_config.mixup_alpha, float):
self.train_criterion = cross_entropy_loss_with_soft_target
elif self.run_config.label_smoothing > 0:
self.train_criterion = \
lambda pred, target: cross_entropy_with_label_smoothing(pred, target, self.run_config.label_smoothing)
else:
self.train_criterion = nn.CrossEntropyLoss()
self.test_criterion = nn.CrossEntropyLoss()
# optimizer
if self.run_config.no_decay_keys:
keys = self.run_config.no_decay_keys.split('#')
net_params = [
self.network.get_parameters(keys, mode='exclude'), # parameters with weight decay
self.network.get_parameters(keys, mode='include'), # parameters without weight decay
]
else:
# noinspection PyBroadException
try:
net_params = self.network.weight_parameters()
except Exception:
net_params = []
for param in self.network.parameters():
if param.requires_grad:
net_params.append(param)
self.optimizer = self.run_config.build_optimizer(net_params)
self.net = torch.nn.DataParallel(self.net)
if self.mode == 'generator':
# PP
save_dir = f'{args.save_path}/predictor/model/ckpt_max_corr.pt'
self.acc_predictor = pp.to('cuda')
self.acc_predictor.load_state_dict(torch.load(save_dir))
self.acc_predictor = torch.nn.DataParallel(self.acc_predictor)
model = models.resnet18(pretrained=True).eval()
feature_extractor = torch.nn.Sequential(*list(model.children())[:-1]).to(self.device)
self.feature_extractor = torch.nn.DataParallel(feature_extractor)
""" save path and log path """
@property
def save_path(self):
if self.__dict__.get('_save_path', None) is None:
save_path = os.path.join(self.path, 'checkpoint')
os.makedirs(save_path, exist_ok=True)
self.__dict__['_save_path'] = save_path
return self.__dict__['_save_path']
@property
def logs_path(self):
if self.__dict__.get('_logs_path', None) is None:
logs_path = os.path.join(self.path, 'logs')
os.makedirs(logs_path, exist_ok=True)
self.__dict__['_logs_path'] = logs_path
return self.__dict__['_logs_path']
@property
def network(self):
return self.net.module if isinstance(self.net, nn.DataParallel) else self.net
def write_log(self, log_str, prefix='valid', should_print=True, mode='a'):
write_log(self.logs_path, log_str, prefix, should_print, mode)
""" save and load models """
def save_model(self, checkpoint=None, is_best=False, model_name=None):
if checkpoint is None:
checkpoint = {'state_dict': self.network.state_dict()}
if model_name is None:
model_name = 'checkpoint.pth.tar'
checkpoint['dataset'] = self.run_config.dataset # add `dataset` info to the checkpoint
latest_fname = os.path.join(self.save_path, 'latest.txt')
model_path = os.path.join(self.save_path, model_name)
with open(latest_fname, 'w') as fout:
fout.write(model_path + '\n')
torch.save(checkpoint, model_path)
if is_best:
best_path = os.path.join(self.save_path, 'model_best.pth.tar')
torch.save({'state_dict': checkpoint['state_dict']}, best_path)
def load_model(self, model_fname=None):
latest_fname = os.path.join(self.save_path, 'latest.txt')
if model_fname is None and os.path.exists(latest_fname):
with open(latest_fname, 'r') as fin:
model_fname = fin.readline()
if model_fname[-1] == '\n':
model_fname = model_fname[:-1]
# noinspection PyBroadException
try:
if model_fname is None or not os.path.exists(model_fname):
model_fname = '%s/checkpoint.pth.tar' % self.save_path
with open(latest_fname, 'w') as fout:
fout.write(model_fname + '\n')
print("=> loading checkpoint '{}'".format(model_fname))
checkpoint = torch.load(model_fname, map_location='cpu')
except Exception:
print('fail to load checkpoint from %s' % self.save_path)
return {}
self.network.load_state_dict(checkpoint['state_dict'])
if 'epoch' in checkpoint:
self.start_epoch = checkpoint['epoch'] + 1
if 'best_acc' in checkpoint:
self.best_acc = checkpoint['best_acc']
if 'optimizer' in checkpoint:
self.optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}'".format(model_fname))
return checkpoint
def save_config(self, extra_run_config=None, extra_net_config=None):
""" dump run_config and net_config to the model_folder """
run_save_path = os.path.join(self.path, 'run.config')
if not os.path.isfile(run_save_path):
run_config = self.run_config.config
if extra_run_config is not None:
run_config.update(extra_run_config)
json.dump(run_config, open(run_save_path, 'w'), indent=4)
print('Run configs dump to %s' % run_save_path)
try:
net_save_path = os.path.join(self.path, 'net.config')
net_config = self.network.config
if extra_net_config is not None:
net_config.update(extra_net_config)
json.dump(net_config, open(net_save_path, 'w'), indent=4)
print('Network configs dump to %s' % net_save_path)
except Exception:
print('%s do not support net config' % type(self.network))
""" metric related """
def get_metric_dict(self):
return {
'top1': AverageMeter(),
'top5': AverageMeter(),
}
def update_metric(self, metric_dict, output, labels):
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
metric_dict['top1'].update(acc1[0].item(), output.size(0))
metric_dict['top5'].update(acc5[0].item(), output.size(0))
def get_metric_vals(self, metric_dict, return_dict=False):
if return_dict:
return {
key: metric_dict[key].avg for key in metric_dict
}
else:
return [metric_dict[key].avg for key in metric_dict]
def get_metric_names(self):
return 'top1', 'top5'
""" train and test """
def validate(self, epoch=0, is_test=False, run_str='', net=None,
data_loader=None, no_logs=False, train_mode=False, net_setting=None):
if net is None:
net = self.net
if not isinstance(net, nn.DataParallel):
net = nn.DataParallel(net)
if data_loader is not None:
self.data_loader = data_loader
if train_mode:
net.train()
else:
net.eval()
losses = AverageMeter()
metric_dict = self.get_metric_dict()
features_stack = []
with torch.no_grad():
with tqdm(total=len(self.data_loader),
desc='Validate Epoch #{} {}'.format(epoch + 1, run_str), disable=no_logs) as t:
for i, (images, labels) in enumerate(self.data_loader):
images, labels = images.to(self.device), labels.to(self.device)
if self.mode == 'generator':
features = self.feature_extractor(images).squeeze()
features_stack.append(features)
# compute output
output = net(images)
loss = self.test_criterion(output, labels)
# measure accuracy and record loss
self.update_metric(metric_dict, output, labels)
losses.update(loss.item(), images.size(0))
t.set_postfix({
'loss': losses.avg,
**self.get_metric_vals(metric_dict, return_dict=True),
'img_size': images.size(2),
})
t.update(1)
if self.mode == 'generator':
features_stack = torch.cat(features_stack)
igraph_g = decode_ofa_mbv3_to_igraph(net_setting)[0]
D_mu = self.acc_predictor.module.set_encode(features_stack.unsqueeze(0).to('cuda'))
G_mu = self.acc_predictor.module.graph_encode(igraph_g)
pred_acc = self.acc_predictor.module.predict(D_mu.unsqueeze(0), G_mu).item()
return losses.avg, self.get_metric_vals(metric_dict), \
pred_acc if self.mode == 'generator' else None
def validate_all_resolution(self, epoch=0, is_test=False, net=None):
if net is None:
net = self.network
if isinstance(self.run_config.data_provider.image_size, list):
img_size_list, loss_list, top1_list, top5_list = [], [], [], []
for img_size in self.run_config.data_provider.image_size:
img_size_list.append(img_size)
self.run_config.data_provider.assign_active_img_size(img_size)
self.reset_running_statistics(net=net)
loss, (top1, top5) = self.validate(epoch, is_test, net=net)
loss_list.append(loss)
top1_list.append(top1)
top5_list.append(top5)
return img_size_list, loss_list, top1_list, top5_list
else:
loss, (top1, top5) = self.validate(epoch, is_test, net=net)
return [self.run_config.data_provider.active_img_size], [loss], [top1], [top5]
def reset_running_statistics(self, net=None, subset_size=2000, subset_batch_size=200, data_loader=None):
from ofa_local.imagenet_classification.elastic_nn.utils import set_running_statistics
if net is None:
net = self.network
if data_loader is None:
data_loader = self.run_config.random_sub_train_loader(subset_size, subset_batch_size)
set_running_statistics(net, data_loader)