first commit
This commit is contained in:
1
MobileNetV3/evaluation/__init__.py
Executable file
1
MobileNetV3/evaluation/__init__.py
Executable file
@@ -0,0 +1 @@
|
||||
from .evaluator import get_stats_eval, get_nn_eval
|
58
MobileNetV3/evaluation/evaluator.py
Normal file
58
MobileNetV3/evaluation/evaluator.py
Normal file
@@ -0,0 +1,58 @@
|
||||
import networkx as nx
|
||||
from .structure_evaluator import mmd_eval
|
||||
from .gin_evaluator import nn_based_eval
|
||||
from torch_geometric.utils import to_networkx
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import dgl
|
||||
|
||||
|
||||
def get_stats_eval(config):
|
||||
|
||||
if config.eval.mmd_distance.lower() == 'rbf':
|
||||
method = [('degree', 1., 'argmax'), ('cluster', 0.1, 'argmax'),
|
||||
('spectral', 1., 'argmax')]
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
def eval_stats_fn(test_dataset, pred_graph_list):
|
||||
pred_G = [nx.from_numpy_matrix(pred_adj) for pred_adj in pred_graph_list]
|
||||
sub_pred_G = []
|
||||
if config.eval.max_subgraph:
|
||||
for G in pred_G:
|
||||
CGs = [G.subgraph(c) for c in nx.connected_components(G)]
|
||||
CGs = sorted(CGs, key=lambda x: x.number_of_nodes(), reverse=True)
|
||||
sub_pred_G += [CGs[0]]
|
||||
pred_G = sub_pred_G
|
||||
|
||||
test_G = [to_networkx(test_dataset[i], to_undirected=True, remove_self_loops=True)
|
||||
for i in range(len(test_dataset))]
|
||||
results = mmd_eval(test_G, pred_G, method)
|
||||
return results
|
||||
|
||||
return eval_stats_fn
|
||||
|
||||
|
||||
def get_nn_eval(config):
|
||||
|
||||
if hasattr(config.eval, "N_gin"):
|
||||
N_gin = config.eval.N_gin
|
||||
else:
|
||||
N_gin = 10
|
||||
|
||||
def nn_eval_fn(test_dataset, pred_graph_list):
|
||||
pred_G = [nx.from_numpy_matrix(pred_adj) for pred_adj in pred_graph_list]
|
||||
sub_pred_G = []
|
||||
if config.eval.max_subgraph:
|
||||
for G in pred_G:
|
||||
CGs = [G.subgraph(c) for c in nx.connected_components(G)]
|
||||
CGs = sorted(CGs, key=lambda x: x.number_of_nodes(), reverse=True)
|
||||
sub_pred_G += [CGs[0]]
|
||||
pred_G = sub_pred_G
|
||||
test_G = [to_networkx(test_dataset[i], to_undirected=True, remove_self_loops=True)
|
||||
for i in range(len(test_dataset))]
|
||||
|
||||
results = nn_based_eval(test_G, pred_G, N_gin)
|
||||
return results
|
||||
|
||||
return nn_eval_fn
|
311
MobileNetV3/evaluation/gin.py
Normal file
311
MobileNetV3/evaluation/gin.py
Normal file
@@ -0,0 +1,311 @@
|
||||
"""Modified from https://github.com/uoguelph-mlrg/GGM-metrics"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import dgl.function as fn
|
||||
from dgl.utils import expand_as_pair
|
||||
from dgl.nn import SumPooling, AvgPooling, MaxPooling
|
||||
|
||||
|
||||
class GINConv(nn.Module):
|
||||
def __init__(self,
|
||||
apply_func,
|
||||
aggregator_type,
|
||||
init_eps=0,
|
||||
learn_eps=False):
|
||||
super(GINConv, self).__init__()
|
||||
self.apply_func = apply_func
|
||||
self._aggregator_type = aggregator_type
|
||||
if aggregator_type == 'sum':
|
||||
self._reducer = fn.sum
|
||||
elif aggregator_type == 'max':
|
||||
self._reducer = fn.max
|
||||
elif aggregator_type == 'mean':
|
||||
self._reducer = fn.mean
|
||||
else:
|
||||
raise KeyError('Aggregator type {} not recognized.'.format(aggregator_type))
|
||||
# to specify whether eps is trainable or not.
|
||||
if learn_eps:
|
||||
self.eps = torch.nn.Parameter(torch.FloatTensor([init_eps]))
|
||||
else:
|
||||
self.register_buffer('eps', torch.FloatTensor([init_eps]))
|
||||
|
||||
def forward(self, graph, feat, edge_weight=None):
|
||||
r"""
|
||||
Description
|
||||
-----------
|
||||
Compute Graph Isomorphism Network layer.
|
||||
Parameters
|
||||
----------
|
||||
graph : DGLGraph
|
||||
The graph.
|
||||
feat : torch.Tensor or pair of torch.Tensor
|
||||
If a torch.Tensor is given, the input feature of shape :math:`(N, D_{in})` where
|
||||
:math:`D_{in}` is size of input feature, :math:`N` is the number of nodes.
|
||||
If a pair of torch.Tensor is given, the pair must contain two tensors of shape
|
||||
:math:`(N_{in}, D_{in})` and :math:`(N_{out}, D_{in})`.
|
||||
If ``apply_func`` is not None, :math:`D_{in}` should
|
||||
fit the input dimensionality requirement of ``apply_func``.
|
||||
edge_weight : torch.Tensor, optional
|
||||
Optional tensor on the edge. If given, the convolution will weight
|
||||
with regard to the message.
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor
|
||||
The output feature of shape :math:`(N, D_{out})` where
|
||||
:math:`D_{out}` is the output dimensionality of ``apply_func``.
|
||||
If ``apply_func`` is None, :math:`D_{out}` should be the same
|
||||
as input dimensionality.
|
||||
"""
|
||||
with graph.local_scope():
|
||||
aggregate_fn = self.concat_edge_msg
|
||||
# aggregate_fn = fn.copy_src('h', 'm')
|
||||
if edge_weight is not None:
|
||||
assert edge_weight.shape[0] == graph.number_of_edges()
|
||||
graph.edata['_edge_weight'] = edge_weight
|
||||
aggregate_fn = fn.u_mul_e('h', '_edge_weight', 'm')
|
||||
|
||||
feat_src, feat_dst = expand_as_pair(feat, graph)
|
||||
graph.srcdata['h'] = feat_src
|
||||
graph.update_all(aggregate_fn, self._reducer('m', 'neigh'))
|
||||
|
||||
|
||||
diff = torch.tensor(graph.dstdata['neigh'].shape[1: ]) - torch.tensor(feat_dst.shape[1: ])
|
||||
zeros = torch.zeros(feat_dst.shape[0], *diff).to(feat_dst.device)
|
||||
feat_dst = torch.cat([feat_dst, zeros], dim=1)
|
||||
rst = (1 + self.eps) * feat_dst + graph.dstdata['neigh']
|
||||
if self.apply_func is not None:
|
||||
rst = self.apply_func(rst)
|
||||
return rst
|
||||
|
||||
def concat_edge_msg(self, edges):
|
||||
if self.edge_feat_loc not in edges.data:
|
||||
return {'m': edges.src['h']}
|
||||
else:
|
||||
m = torch.cat([edges.src['h'], edges.data[self.edge_feat_loc]], dim=1)
|
||||
return {'m': m}
|
||||
|
||||
|
||||
class ApplyNodeFunc(nn.Module):
|
||||
"""Update the node feature hv with MLP, BN and ReLU."""
|
||||
def __init__(self, mlp):
|
||||
super(ApplyNodeFunc, self).__init__()
|
||||
self.mlp = mlp
|
||||
self.bn = nn.BatchNorm1d(self.mlp.output_dim)
|
||||
|
||||
def forward(self, h):
|
||||
h = self.mlp(h)
|
||||
h = self.bn(h)
|
||||
h = F.relu(h)
|
||||
return h
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
"""MLP with linear output"""
|
||||
def __init__(self, num_layers, input_dim, hidden_dim, output_dim):
|
||||
"""MLP layers construction
|
||||
|
||||
Paramters
|
||||
---------
|
||||
num_layers: int
|
||||
The number of linear layers
|
||||
input_dim: int
|
||||
The dimensionality of input features
|
||||
hidden_dim: int
|
||||
The dimensionality of hidden units at ALL layers
|
||||
output_dim: int
|
||||
The number of classes for prediction
|
||||
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
self.linear_or_not = True # default is linear model
|
||||
self.num_layers = num_layers
|
||||
self.output_dim = output_dim
|
||||
|
||||
if num_layers < 1:
|
||||
raise ValueError("number of layers should be positive!")
|
||||
elif num_layers == 1:
|
||||
# Linear model
|
||||
self.linear = nn.Linear(input_dim, output_dim)
|
||||
|
||||
else:
|
||||
# Multi-layer model
|
||||
self.linear_or_not = False
|
||||
self.linears = torch.nn.ModuleList()
|
||||
self.batch_norms = torch.nn.ModuleList()
|
||||
|
||||
self.linears.append(nn.Linear(input_dim, hidden_dim))
|
||||
for layer in range(num_layers - 2):
|
||||
self.linears.append(nn.Linear(hidden_dim, hidden_dim))
|
||||
self.linears.append(nn.Linear(hidden_dim, output_dim))
|
||||
|
||||
for layer in range(num_layers - 1):
|
||||
self.batch_norms.append(nn.BatchNorm1d((hidden_dim)))
|
||||
|
||||
def forward(self, x):
|
||||
if self.linear_or_not:
|
||||
# If linear model
|
||||
return self.linear(x)
|
||||
else:
|
||||
# If MLP
|
||||
h = x
|
||||
for i in range(self.num_layers - 1):
|
||||
h = F.relu(self.batch_norms[i](self.linears[i](h)))
|
||||
return self.linears[-1](h)
|
||||
|
||||
|
||||
class GIN(nn.Module):
|
||||
"""GIN model"""
|
||||
def __init__(self, num_layers, num_mlp_layers, input_dim, hidden_dim,
|
||||
graph_pooling_type, neighbor_pooling_type, edge_feat_dim=0,
|
||||
final_dropout=0.0, learn_eps=False, output_dim=1, **kwargs):
|
||||
"""model parameters setting
|
||||
|
||||
Paramters
|
||||
---------
|
||||
num_layers: int
|
||||
The number of linear layers in the neural network
|
||||
num_mlp_layers: int
|
||||
The number of linear layers in mlps
|
||||
input_dim: int
|
||||
The dimensionality of input features
|
||||
hidden_dim: int
|
||||
The dimensionality of hidden units at ALL layers
|
||||
output_dim: int
|
||||
The number of classes for prediction
|
||||
final_dropout: float
|
||||
dropout ratio on the final linear layer
|
||||
learn_eps: boolean
|
||||
If True, learn epsilon to distinguish center nodes from neighbors
|
||||
If False, aggregate neighbors and center nodes altogether.
|
||||
neighbor_pooling_type: str
|
||||
how to aggregate neighbors (sum, mean, or max)
|
||||
graph_pooling_type: str
|
||||
how to aggregate entire nodes in a graph (sum, mean or max)
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
|
||||
def init_weights_orthogonal(m):
|
||||
if isinstance(m, nn.Linear):
|
||||
torch.nn.init.orthogonal_(m.weight)
|
||||
elif isinstance(m, MLP):
|
||||
if hasattr(m, 'linears'):
|
||||
m.linears.apply(init_weights_orthogonal)
|
||||
else:
|
||||
m.linear.apply(init_weights_orthogonal)
|
||||
elif isinstance(m, nn.ModuleList):
|
||||
pass
|
||||
else:
|
||||
raise Exception()
|
||||
|
||||
self.num_layers = num_layers
|
||||
self.learn_eps = learn_eps
|
||||
|
||||
# List of MLPs
|
||||
self.ginlayers = torch.nn.ModuleList()
|
||||
self.batch_norms = torch.nn.ModuleList()
|
||||
|
||||
# self.preprocess_nodes = PreprocessNodeAttrs(
|
||||
# node_attrs=node_preprocess, output_dim=node_preprocess_output_dim)
|
||||
# print(input_dim)
|
||||
for layer in range(self.num_layers - 1):
|
||||
if layer == 0:
|
||||
mlp = MLP(num_mlp_layers, input_dim + edge_feat_dim, hidden_dim, hidden_dim)
|
||||
else:
|
||||
mlp = MLP(num_mlp_layers, hidden_dim + edge_feat_dim, hidden_dim, hidden_dim)
|
||||
if kwargs['init'] == 'orthogonal':
|
||||
init_weights_orthogonal(mlp)
|
||||
|
||||
self.ginlayers.append(
|
||||
GINConv(ApplyNodeFunc(mlp), neighbor_pooling_type, 0, self.learn_eps))
|
||||
self.batch_norms.append(nn.BatchNorm1d(hidden_dim))
|
||||
|
||||
# Linear function for graph poolings of output of each layer
|
||||
# which maps the output of different layers into a prediction score
|
||||
self.linears_prediction = torch.nn.ModuleList()
|
||||
|
||||
for layer in range(num_layers):
|
||||
if layer == 0:
|
||||
self.linears_prediction.append(
|
||||
nn.Linear(input_dim, output_dim))
|
||||
else:
|
||||
self.linears_prediction.append(
|
||||
nn.Linear(hidden_dim, output_dim))
|
||||
|
||||
if kwargs['init'] == 'orthogonal':
|
||||
# print('orthogonal')
|
||||
self.linears_prediction.apply(init_weights_orthogonal)
|
||||
|
||||
self.drop = nn.Dropout(final_dropout)
|
||||
|
||||
if graph_pooling_type == 'sum':
|
||||
self.pool = SumPooling()
|
||||
elif graph_pooling_type == 'mean':
|
||||
self.pool = AvgPooling()
|
||||
elif graph_pooling_type == 'max':
|
||||
self.pool = MaxPooling()
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
def forward(self, g, h):
|
||||
# list of hidden representation at each layer (including input)
|
||||
hidden_rep = [h]
|
||||
|
||||
# h = self.preprocess_nodes(h)
|
||||
for i in range(self.num_layers - 1):
|
||||
h = self.ginlayers[i](g, h)
|
||||
h = self.batch_norms[i](h)
|
||||
h = F.relu(h)
|
||||
hidden_rep.append(h)
|
||||
|
||||
score_over_layer = 0
|
||||
|
||||
# perform pooling over all nodes in each graph in every layer
|
||||
for i, h in enumerate(hidden_rep):
|
||||
pooled_h = self.pool(g, h)
|
||||
score_over_layer += self.drop(self.linears_prediction[i](pooled_h))
|
||||
return score_over_layer
|
||||
|
||||
def get_graph_embed(self, g, h):
|
||||
self.eval()
|
||||
with torch.no_grad():
|
||||
# return self.forward(g, h).detach().numpy()
|
||||
hidden_rep = []
|
||||
# h = self.preprocess_nodes(h)
|
||||
for i in range(self.num_layers - 1):
|
||||
h = self.ginlayers[i](g, h)
|
||||
h = self.batch_norms[i](h)
|
||||
h = F.relu(h)
|
||||
hidden_rep.append(h)
|
||||
|
||||
# perform pooling over all nodes in each graph in every layer
|
||||
graph_embed = torch.Tensor([]).to(self.device)
|
||||
for i, h in enumerate(hidden_rep):
|
||||
pooled_h = self.pool(g, h)
|
||||
graph_embed = torch.cat([graph_embed, pooled_h], dim = 1)
|
||||
|
||||
return graph_embed
|
||||
|
||||
def get_graph_embed_no_cat(self, g, h):
|
||||
self.eval()
|
||||
with torch.no_grad():
|
||||
hidden_rep = []
|
||||
# h = self.preprocess_nodes(h)
|
||||
for i in range(self.num_layers - 1):
|
||||
h = self.ginlayers[i](g, h)
|
||||
h = self.batch_norms[i](h)
|
||||
h = F.relu(h)
|
||||
hidden_rep.append(h)
|
||||
|
||||
return self.pool(g, hidden_rep[-1]).to(self.device)
|
||||
|
||||
@property
|
||||
def edge_feat_loc(self):
|
||||
return self.ginlayers[0].edge_feat_loc
|
||||
|
||||
@edge_feat_loc.setter
|
||||
def edge_feat_loc(self, loc):
|
||||
for layer in self.ginlayers:
|
||||
layer.edge_feat_loc = loc
|
292
MobileNetV3/evaluation/gin_evaluator.py
Normal file
292
MobileNetV3/evaluation/gin_evaluator.py
Normal file
@@ -0,0 +1,292 @@
|
||||
"""Evaluation on random GIN features. Modified from https://github.com/uoguelph-mlrg/GGM-metrics"""
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
import sklearn
|
||||
import sklearn.metrics
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
import time
|
||||
import dgl
|
||||
|
||||
from .gin import GIN
|
||||
|
||||
|
||||
def load_feature_extractor(
|
||||
device, num_layers=3, hidden_dim=35, neighbor_pooling_type='sum',
|
||||
graph_pooling_type='sum', input_dim=1, edge_feat_dim=0,
|
||||
dont_concat=False, num_mlp_layers=2, output_dim=1,
|
||||
node_feat_loc='attr', edge_feat_loc='attr', init='orthogonal',
|
||||
**kwargs):
|
||||
|
||||
model = GIN(num_layers=num_layers, hidden_dim=hidden_dim, neighbor_pooling_type=neighbor_pooling_type,
|
||||
graph_pooling_type=graph_pooling_type, input_dim=input_dim, edge_feat_dim=edge_feat_dim,
|
||||
num_mlp_layers=num_mlp_layers, output_dim=output_dim, init=init)
|
||||
|
||||
model.node_feat_loc = node_feat_loc
|
||||
model.edge_feat_loc = edge_feat_loc
|
||||
|
||||
model.eval()
|
||||
|
||||
if dont_concat:
|
||||
model.forward = model.get_graph_embed_no_cat
|
||||
else:
|
||||
model.forward = model.get_graph_embed
|
||||
|
||||
model.device = device
|
||||
return model.to(device)
|
||||
|
||||
|
||||
def time_function(func):
|
||||
def wrapper(*args, **kwargs):
|
||||
start = time.time()
|
||||
results = func(*args, **kwargs)
|
||||
end = time.time()
|
||||
return results, end - start
|
||||
return wrapper
|
||||
|
||||
|
||||
class GINMetric():
|
||||
def __init__(self, model):
|
||||
self.feat_extractor = model
|
||||
self.get_activations = self.get_activations_gin
|
||||
|
||||
@time_function
|
||||
def get_activations_gin(self, generated_dataset, reference_dataset):
|
||||
return self._get_activations(generated_dataset, reference_dataset)
|
||||
|
||||
def _get_activations(self, generated_dataset, reference_dataset):
|
||||
gen_activations = self.__get_activations_single_dataset(generated_dataset)
|
||||
ref_activations = self.__get_activations_single_dataset(reference_dataset)
|
||||
|
||||
scaler = StandardScaler()
|
||||
scaler.fit(ref_activations)
|
||||
ref_activations = scaler.transform(ref_activations)
|
||||
gen_activations = scaler.transform(gen_activations)
|
||||
|
||||
return gen_activations, ref_activations
|
||||
|
||||
def __get_activations_single_dataset(self, dataset):
|
||||
|
||||
node_feat_loc = self.feat_extractor.node_feat_loc
|
||||
edge_feat_loc = self.feat_extractor.edge_feat_loc
|
||||
|
||||
ndata = [node_feat_loc] if node_feat_loc in dataset[0].ndata else '__ALL__'
|
||||
edata = [edge_feat_loc] if edge_feat_loc in dataset[0].edata else '__ALL__'
|
||||
graphs = dgl.batch(dataset, ndata=ndata, edata=edata).to(self.feat_extractor.device)
|
||||
|
||||
if node_feat_loc not in graphs.ndata: # Use degree as features
|
||||
feats = graphs.in_degrees() + graphs.out_degrees()
|
||||
feats = feats.unsqueeze(1).type(torch.float32)
|
||||
else:
|
||||
feats = graphs.ndata[node_feat_loc]
|
||||
|
||||
graph_embeds = self.feat_extractor(graphs, feats)
|
||||
return graph_embeds.cpu().detach().numpy()
|
||||
|
||||
def evaluate(self, *args, **kwargs):
|
||||
raise Exception('Must be implemented by child class')
|
||||
|
||||
|
||||
class MMDEvaluation(GINMetric):
|
||||
def __init__(self, model, kernel='rbf', sigma='range', multiplier='mean'):
|
||||
super().__init__(model)
|
||||
|
||||
if multiplier == 'mean':
|
||||
self.__get_sigma_mult_factor = self.__mean_pairwise_distance
|
||||
elif multiplier == 'median':
|
||||
self.__get_sigma_mult_factor = self.__median_pairwise_distance
|
||||
elif multiplier is None:
|
||||
self.__get_sigma_mult_factor = lambda *args, **kwargs: 1
|
||||
else:
|
||||
raise Exception(multiplier)
|
||||
|
||||
if 'rbf' in kernel:
|
||||
if sigma == 'range':
|
||||
self.base_sigmas = np.array([0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 2.5, 5.0, 7.5, 10.0])
|
||||
|
||||
if multiplier == 'mean':
|
||||
self.name = 'mmd_rbf'
|
||||
elif multiplier == 'median':
|
||||
self.name = 'mmd_rbf_adaptive_median'
|
||||
else:
|
||||
self.name = 'mmd_rbf_adaptive'
|
||||
elif sigma == 'one':
|
||||
self.base_sigmas = np.array([1])
|
||||
|
||||
if multiplier == 'mean':
|
||||
self.name = 'mmd_rbf_single_mean'
|
||||
elif multiplier == 'median':
|
||||
self.name = 'mmd_rbf_single_median'
|
||||
else:
|
||||
self.name = 'mmd_rbf_single'
|
||||
else:
|
||||
raise Exception(sigma)
|
||||
|
||||
self.evaluate = self.calculate_MMD_rbf_quadratic
|
||||
|
||||
elif 'linear' in kernel:
|
||||
self.evaluate = self.calculate_MMD_linear_kernel
|
||||
|
||||
else:
|
||||
raise Exception()
|
||||
|
||||
def __get_pairwise_distances(self, generated_dataset, reference_dataset):
|
||||
return sklearn.metrics.pairwise_distances(reference_dataset, generated_dataset, metric='euclidean', n_jobs=8)**2
|
||||
|
||||
def __mean_pairwise_distance(self, dists_GR):
|
||||
return np.sqrt(dists_GR.mean())
|
||||
|
||||
def __median_pairwise_distance(self, dists_GR):
|
||||
return np.sqrt(np.median(dists_GR))
|
||||
|
||||
def get_sigmas(self, dists_GR):
|
||||
mult_factor = self.__get_sigma_mult_factor(dists_GR)
|
||||
return self.base_sigmas * mult_factor
|
||||
|
||||
@time_function
|
||||
def calculate_MMD_rbf_quadratic(self, generated_dataset=None, reference_dataset=None):
|
||||
# https://github.com/djsutherland/opt-mmd/blob/master/two_sample/mmd.py
|
||||
|
||||
if not isinstance(generated_dataset, torch.Tensor) and not isinstance(generated_dataset, np.ndarray):
|
||||
(generated_dataset, reference_dataset), _ = self.get_activations(generated_dataset, reference_dataset)
|
||||
|
||||
GG = self.__get_pairwise_distances(generated_dataset, generated_dataset)
|
||||
GR = self.__get_pairwise_distances(generated_dataset, reference_dataset)
|
||||
RR = self.__get_pairwise_distances(reference_dataset, reference_dataset)
|
||||
|
||||
max_mmd = 0
|
||||
sigmas = self.get_sigmas(GR)
|
||||
|
||||
for sigma in sigmas:
|
||||
gamma = 1 / (2 * sigma**2)
|
||||
|
||||
K_GR = np.exp(-gamma * GR)
|
||||
K_GG = np.exp(-gamma * GG)
|
||||
K_RR = np.exp(-gamma * RR)
|
||||
|
||||
mmd = K_GG.mean() + K_RR.mean() - 2 * K_GR.mean()
|
||||
max_mmd = mmd if mmd > max_mmd else max_mmd
|
||||
|
||||
return {self.name: max_mmd}
|
||||
|
||||
@time_function
|
||||
def calculate_MMD_linear_kernel(self, generated_dataset=None, reference_dataset=None):
|
||||
# https://github.com/djsutherland/opt-mmd/blob/master/two_sample/mmd.py
|
||||
if not isinstance(generated_dataset, torch.Tensor) and not isinstance(generated_dataset, np.ndarray):
|
||||
(generated_dataset, reference_dataset), _ = self.get_activations(generated_dataset, reference_dataset)
|
||||
|
||||
G_bar = generated_dataset.mean(axis=0)
|
||||
R_bar = reference_dataset.mean(axis=0)
|
||||
Z_bar = G_bar - R_bar
|
||||
mmd = Z_bar.dot(Z_bar)
|
||||
mmd = mmd if mmd >= 0 else 0
|
||||
return {'mmd_linear': mmd}
|
||||
|
||||
|
||||
class prdcEvaluation(GINMetric):
|
||||
# From PRDC github: https://github.com/clovaai/generative-evaluation-prdc/blob/master/prdc/prdc.py#L54
|
||||
def __init__(self, *args, use_pr=False, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.use_pr = use_pr
|
||||
|
||||
@time_function
|
||||
def evaluate(self, generated_dataset=None, reference_dataset=None, nearest_k=5):
|
||||
""" Computes precision, recall, density, and coverage given two manifolds. """
|
||||
|
||||
if not isinstance(generated_dataset, torch.Tensor) and not isinstance(generated_dataset, np.ndarray):
|
||||
(generated_dataset, reference_dataset), _ = self.get_activations(generated_dataset, reference_dataset)
|
||||
|
||||
real_nearest_neighbour_distances = self.__compute_nearest_neighbour_distances(reference_dataset, nearest_k)
|
||||
distance_real_fake = self.__compute_pairwise_distance(reference_dataset, generated_dataset)
|
||||
|
||||
if self.use_pr:
|
||||
fake_nearest_neighbour_distances = self.__compute_nearest_neighbour_distances(generated_dataset, nearest_k)
|
||||
precision = (
|
||||
distance_real_fake <= np.expand_dims(real_nearest_neighbour_distances, axis=1)
|
||||
).any(axis=0).mean()
|
||||
|
||||
recall = (
|
||||
distance_real_fake <= np.expand_dims(fake_nearest_neighbour_distances, axis=0)
|
||||
).any(axis=1).mean()
|
||||
|
||||
f1_pr = 2 / ((1 / (precision + 1e-8)) + (1 / (recall + 1e-8)))
|
||||
result = dict(precision=precision, recall=recall, f1_pr=f1_pr)
|
||||
else:
|
||||
density = (1. / float(nearest_k)) * (
|
||||
distance_real_fake <= np.expand_dims(real_nearest_neighbour_distances, axis=1)).sum(axis=0).mean()
|
||||
|
||||
coverage = (distance_real_fake.min(axis=1) <= real_nearest_neighbour_distances).mean()
|
||||
|
||||
f1_dc = 2 / ((1 / (density + 1e-8)) + (1 / (coverage + 1e-8)))
|
||||
result = dict(density=density, coverage=coverage, f1_dc=f1_dc)
|
||||
return result
|
||||
|
||||
def __compute_pairwise_distance(self, data_x, data_y=None):
|
||||
"""
|
||||
Args:
|
||||
data_x: numpy.ndarray([N, feature_dim], dtype=np.float32)
|
||||
data_y: numpy.ndarray([N, feature_dim], dtype=np.float32)
|
||||
Return:
|
||||
numpy.ndarray([N, N], dtype=np.float32) of pairwise distances.
|
||||
"""
|
||||
if data_y is None:
|
||||
data_y = data_x
|
||||
dists = sklearn.metrics.pairwise_distances(data_x, data_y, metric='euclidean', n_jobs=8)
|
||||
return dists
|
||||
|
||||
def __get_kth_value(self, unsorted, k, axis=-1):
|
||||
"""
|
||||
Args:
|
||||
unsorted: numpy.ndarray of any dimensionality.
|
||||
k: int
|
||||
Return:
|
||||
kth values along the designated axis.
|
||||
"""
|
||||
indices = np.argpartition(unsorted, k, axis=axis)[..., :k]
|
||||
k_smallest = np.take_along_axis(unsorted, indices, axis=axis)
|
||||
kth_values = k_smallest.max(axis=axis)
|
||||
return kth_values
|
||||
|
||||
def __compute_nearest_neighbour_distances(self, input_features, nearest_k):
|
||||
"""
|
||||
Args:
|
||||
input_features: numpy.ndarray([N, feature_dim], dtype=np.float32)
|
||||
nearest_k: int
|
||||
Return:
|
||||
Distances to kth nearest neighbours.
|
||||
"""
|
||||
distances = self.__compute_pairwise_distance(input_features)
|
||||
radii = self.__get_kth_value(distances, k=nearest_k + 1, axis=-1)
|
||||
return radii
|
||||
|
||||
|
||||
def nn_based_eval(graph_ref_list, graph_pred_list, N_gin=10):
|
||||
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||||
|
||||
evaluators = []
|
||||
for _ in range(N_gin):
|
||||
gin = load_feature_extractor(device)
|
||||
evaluators.append(MMDEvaluation(model=gin, kernel='rbf', sigma='range', multiplier='mean'))
|
||||
evaluators.append(prdcEvaluation(model=gin, use_pr=True))
|
||||
evaluators.append(prdcEvaluation(model=gin, use_pr=False))
|
||||
|
||||
ref_graphs = [dgl.from_networkx(g).to(device) for g in graph_ref_list]
|
||||
gen_graphs = [dgl.from_networkx(g).to(device) for g in graph_pred_list]
|
||||
|
||||
metrics = {
|
||||
'mmd_rbf': [],
|
||||
'f1_pr': [],
|
||||
'f1_dc': []
|
||||
}
|
||||
for evaluator in evaluators:
|
||||
res, time = evaluator.evaluate(generated_dataset=gen_graphs, reference_dataset=ref_graphs)
|
||||
for key in list(res.keys()):
|
||||
if key in metrics:
|
||||
metrics[key].append(res[key])
|
||||
|
||||
results = {
|
||||
'MMD_RBF': (np.mean(metrics['mmd_rbf']), np.std(metrics['mmd_rbf'])),
|
||||
'F1_PR': (np.mean(metrics['f1_pr']), np.std(metrics['f1_pr'])),
|
||||
'F1_DC': (np.mean(metrics['f1_dc']), np.std(metrics['f1_dc']))
|
||||
}
|
||||
return results
|
209
MobileNetV3/evaluation/structure_evaluator.py
Normal file
209
MobileNetV3/evaluation/structure_evaluator.py
Normal file
@@ -0,0 +1,209 @@
|
||||
"""MMD Evaluation on graph structure statistics. Modified from https://github.com/uoguelph-mlrg/GGM-metrics"""
|
||||
|
||||
import numpy as np
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
# from scipy.linalg import toeplitz
|
||||
# import pyemd
|
||||
import concurrent.futures
|
||||
from scipy.linalg import eigvalsh
|
||||
from functools import partial
|
||||
|
||||
|
||||
class Descriptor():
|
||||
def __init__(self, is_parallel=False, bins=100, kernel='rbf', sigma_type='single', **kwargs):
|
||||
self.is_parallel = is_parallel
|
||||
self.bins = bins
|
||||
self.max_workers = kwargs.get('max_workers')
|
||||
|
||||
if kernel == 'rbf':
|
||||
self.distance = self.l2
|
||||
self.name += '_rbf'
|
||||
else:
|
||||
ValueError
|
||||
|
||||
if sigma_type == 'argmax':
|
||||
log_sigmas = np.linspace(-5., 5., 50)
|
||||
# the first 30 sigma values is usually enough
|
||||
log_sigmas = log_sigmas[:30]
|
||||
self.sigmas = [np.exp(log_sigma) for log_sigma in log_sigmas]
|
||||
elif sigma_type == 'single':
|
||||
self.sigmas = kwargs['sigma']
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
def evaluate(self, graph_ref_list, graph_pred_list):
|
||||
"""Compute the distance between the distributions of two unordered sets of graphs.
|
||||
Args:
|
||||
graph_ref_list, graph_pred_list: two lists of networkx graphs to be evaluated.
|
||||
"""
|
||||
|
||||
graph_pred_list = [G for G in graph_pred_list if not G.number_of_nodes() == 0]
|
||||
|
||||
sample_pred = self.extract_features(graph_pred_list)
|
||||
sample_ref = self.extract_features(graph_ref_list)
|
||||
|
||||
GG = self.disc(sample_pred, sample_pred, distance_scaling=self.distance_scaling)
|
||||
GR = self.disc(sample_pred, sample_ref, distance_scaling=self.distance_scaling)
|
||||
RR = self.disc(sample_ref, sample_ref, distance_scaling=self.distance_scaling)
|
||||
|
||||
sigmas = self.sigmas
|
||||
max_mmd = 0
|
||||
mmd_dict = []
|
||||
for sigma in sigmas:
|
||||
gamma = 1 / (2 * sigma ** 2)
|
||||
|
||||
K_GR = np.exp(-gamma * GR)
|
||||
K_GG = np.exp(-gamma * GG)
|
||||
K_RR = np.exp(-gamma * RR)
|
||||
|
||||
mmd = K_GG.mean() + K_RR.mean() - (2 * K_GR.mean())
|
||||
mmd_dict.append((sigma, mmd))
|
||||
max_mmd = mmd if mmd > max_mmd else max_mmd
|
||||
|
||||
# print(self.name, mmd_dict)
|
||||
|
||||
return max_mmd
|
||||
|
||||
def pad_histogram(self, x, y):
|
||||
# convert histogram values x and y to float, and pad them for equal length
|
||||
support_size = max(len(x), len(y))
|
||||
x = x.astype(np.float)
|
||||
y = y.astype(np.float)
|
||||
if len(x) < len(y):
|
||||
x = np.hstack((x, [0.] * (support_size - len(x))))
|
||||
elif len(y) < len(x):
|
||||
y = np.hstack((y, [0.] * (support_size - len(y))))
|
||||
|
||||
return x, y
|
||||
|
||||
# def emd(self, x, y, distance_scaling=1.0):
|
||||
# support_size = max(len(x), len(y))
|
||||
# x, y = self.pad_histogram(x, y)
|
||||
#
|
||||
# d_mat = toeplitz(range(support_size)).astype(np.float)
|
||||
# distance_mat = d_mat / distance_scaling
|
||||
#
|
||||
# dist = pyemd.emd(x, y, distance_mat)
|
||||
# return dist ** 2
|
||||
|
||||
def l2(self, x, y, **kwargs):
|
||||
# gaussian rbf
|
||||
x, y = self.pad_histogram(x, y)
|
||||
dist = np.linalg.norm(x - y, 2)
|
||||
return dist ** 2
|
||||
|
||||
def kernel_parallel_unpacked(self, x, samples2, kernel):
|
||||
dist = []
|
||||
for s2 in samples2:
|
||||
dist += [kernel(x, s2)]
|
||||
return dist
|
||||
|
||||
def kernel_parallel_worker(self, t):
|
||||
return self.kernel_parallel_unpacked(*t)
|
||||
|
||||
def disc(self, samples1, samples2, **kwargs):
|
||||
# Discrepancy between 2 samples
|
||||
tot_dist = []
|
||||
if not self.is_parallel:
|
||||
for s1 in samples1:
|
||||
for s2 in samples2:
|
||||
tot_dist += [self.distance(s1, s2)]
|
||||
else:
|
||||
with concurrent.futures.ProcessPoolExecutor(max_workers=self.max_workers) as executor:
|
||||
for dist in executor.map(self.kernel_parallel_worker,
|
||||
[(s1, samples2, partial(self.distance, **kwargs)) for s1 in samples1]):
|
||||
tot_dist += [dist]
|
||||
return np.array(tot_dist)
|
||||
|
||||
|
||||
class degree(Descriptor):
|
||||
def __init__(self, *args, **kwargs):
|
||||
self.name = 'degree'
|
||||
self.sigmas = [kwargs.get('sigma', 1.0)]
|
||||
self.distance_scaling = 1.0
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def extract_features(self, dataset):
|
||||
res = []
|
||||
if self.is_parallel:
|
||||
with concurrent.futures.ProcessPoolExecutor(max_workers=self.max_workers) as executor:
|
||||
for deg_hist in executor.map(self.degree_worker, dataset):
|
||||
res.append(deg_hist)
|
||||
else:
|
||||
for g in dataset:
|
||||
degree_hist = self.degree_worker(g)
|
||||
res.append(degree_hist)
|
||||
|
||||
res = [s1 / np.sum(s1) for s1 in res]
|
||||
return res
|
||||
|
||||
def degree_worker(self, G):
|
||||
return np.array(nx.degree_histogram(G))
|
||||
|
||||
|
||||
class cluster(Descriptor):
|
||||
def __init__(self, *args, **kwargs):
|
||||
self.name = 'cluster'
|
||||
self.sigmas = [kwargs.get('sigma', [1.0 / 10])]
|
||||
super().__init__(*args, **kwargs)
|
||||
self.distance_scaling = self.bins
|
||||
|
||||
def extract_features(self, dataset):
|
||||
res = []
|
||||
if self.is_parallel:
|
||||
with concurrent.futures.ProcessPoolExecutor(max_workers=self.max_workers) as executor:
|
||||
for clustering_hist in executor.map(self.clustering_worker, [(G, self.bins) for G in dataset]):
|
||||
res.append(clustering_hist)
|
||||
else:
|
||||
for g in dataset:
|
||||
clustering_hist = self.clustering_worker((g, self.bins))
|
||||
res.append(clustering_hist)
|
||||
|
||||
res = [s1 / np.sum(s1) for s1 in res]
|
||||
return res
|
||||
|
||||
def clustering_worker(self, param):
|
||||
G, bins = param
|
||||
clustering_coeffs_list = list(nx.clustering(G).values())
|
||||
hist, _ = np.histogram(
|
||||
clustering_coeffs_list, bins=bins, range=(0.0, 1.0), density=False)
|
||||
return hist
|
||||
|
||||
|
||||
class spectral(Descriptor):
|
||||
def __init__(self, *args, **kwargs):
|
||||
self.name = 'spectral'
|
||||
self.sigmas = [kwargs.get('sigma', 1.0)]
|
||||
self.distance_scaling = 1
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def extract_features(self, dataset):
|
||||
res = []
|
||||
if self.is_parallel:
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_workers) as executor:
|
||||
for spectral_density in executor.map(self.spectral_worker, dataset):
|
||||
res.append(spectral_density)
|
||||
else:
|
||||
for g in dataset:
|
||||
spectral_temp = self.spectral_worker(g)
|
||||
res.append(spectral_temp)
|
||||
return res
|
||||
|
||||
def spectral_worker(self, G):
|
||||
eigs = eigvalsh(nx.normalized_laplacian_matrix(G).todense())
|
||||
spectral_pmf, _ = np.histogram(eigs, bins=200, range=(-1e-5, 2), density=False)
|
||||
spectral_pmf = spectral_pmf / spectral_pmf.sum()
|
||||
return spectral_pmf
|
||||
|
||||
|
||||
def mmd_eval(graph_ref_list, graph_pred_list, methods):
|
||||
evaluators = []
|
||||
for (method, sigma, sigma_type) in methods:
|
||||
evaluators.append(eval(method)(sigma=sigma, sigma_type=sigma_type))
|
||||
|
||||
results = {}
|
||||
for evaluator in evaluators:
|
||||
results[evaluator.name] = evaluator.evaluate(graph_ref_list, graph_pred_list)
|
||||
|
||||
return results
|
Reference in New Issue
Block a user