Working on DGX

This commit is contained in:
Kevin Black
2023-06-24 00:07:55 -07:00
parent 92fc030123
commit c680890d5c
5 changed files with 67 additions and 39 deletions

View File

@@ -0,0 +1,55 @@
import ml_collections
def get_config():
config = ml_collections.ConfigDict()
# misc
config.seed = 42
config.logdir = "logs"
config.num_epochs = 100
config.mixed_precision = "fp16"
config.allow_tf32 = True
# pretrained model initialization
config.pretrained = pretrained = ml_collections.ConfigDict()
pretrained.model = "runwayml/stable-diffusion-v1-5"
pretrained.revision = "main"
# training
config.train = train = ml_collections.ConfigDict()
train.batch_size = 1
train.use_8bit_adam = False
train.scale_lr = False
train.learning_rate = 1e-4
train.adam_beta1 = 0.9
train.adam_beta2 = 0.999
train.adam_weight_decay = 1e-4
train.adam_epsilon = 1e-8
train.gradient_accumulation_steps = 1
train.max_grad_norm = 1.0
train.num_inner_epochs = 1
train.cfg = True
train.adv_clip_max = 10
train.clip_range = 1e-4
# sampling
config.sample = sample = ml_collections.ConfigDict()
sample.num_steps = 30
sample.eta = 1.0
sample.guidance_scale = 5.0
sample.batch_size = 1
sample.num_batches_per_epoch = 1
# prompting
config.prompt_fn = "imagenet_animals"
config.prompt_fn_kwargs = {}
# rewards
config.reward_fn = "jpeg_compressibility"
config.per_prompt_stat_tracking = ml_collections.ConfigDict()
config.per_prompt_stat_tracking.buffer_size = 64
config.per_prompt_stat_tracking.min_count = 16
return config

View File

@@ -0,0 +1,20 @@
import ml_collections
from ddpo_pytorch.config import base
def get_config():
config = base.get_config()
config.mixed_precision = "bf16"
config.allow_tf32 = True
config.train.batch_size = 8
config.train.gradient_accumulation_steps = 4
# sampling
config.sample.num_steps = 50
config.sample.batch_size = 8
config.sample.num_batches_per_epoch = 4
config.per_prompt_stat_tracking = None
return config

View File

@@ -14,6 +14,11 @@ from diffusers.utils import randn_tensor
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput, DDIMScheduler
def _left_broadcast(t, shape):
assert t.ndim <= len(shape)
return t.reshape(t.shape + (1,) * (len(shape) - t.ndim)).broadcast_to(shape)
def _get_variance(self, timestep, prev_timestep):
alpha_prod_t = torch.gather(self.alphas_cumprod, 0, timestep.cpu()).to(timestep.device)
alpha_prod_t_prev = torch.where(
@@ -82,13 +87,16 @@ def ddim_step_with_logprob(
# 1. get previous step value (=t-1)
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
# to prevent OOB on gather
prev_timestep = torch.clamp(prev_timestep, 0, self.config.num_train_timesteps - 1)
# 2. compute alphas, betas
alpha_prod_t = self.alphas_cumprod.gather(0, timestep.cpu()).to(timestep.device)
alpha_prod_t = self.alphas_cumprod.gather(0, timestep.cpu())
alpha_prod_t_prev = torch.where(
prev_timestep.cpu() >= 0, self.alphas_cumprod.gather(0, prev_timestep.cpu()), self.final_alpha_cumprod
).to(timestep.device)
)
alpha_prod_t = _left_broadcast(alpha_prod_t, sample.shape).to(sample.device)
alpha_prod_t_prev = _left_broadcast(alpha_prod_t_prev, sample.shape).to(sample.device)
beta_prod_t = 1 - alpha_prod_t
@@ -121,6 +129,7 @@ def ddim_step_with_logprob(
# σ_t = sqrt((1 α_t1)/(1 α_t)) * sqrt(1 α_t/α_t1)
variance = _get_variance(self, timestep, prev_timestep)
std_dev_t = eta * variance ** (0.5)
std_dev_t = _left_broadcast(std_dev_t, sample.shape).to(sample.device)
if use_clipped_model_output:
# the pred_epsilon is always re-derived from the clipped x_0 in Glide
@@ -153,4 +162,4 @@ def ddim_step_with_logprob(
# mean along all but batch dimension
log_prob = log_prob.mean(dim=tuple(range(1, log_prob.ndim)))
return prev_sample, log_prob
return prev_sample.type(sample.dtype), log_prob