# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import torch import argparse import numpy as np from torchvision.io import read_video from PIL import Image from cotracker.utils.visualizer import Visualizer from cotracker.predictor import CoTrackerPredictor if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--video_path", default="./assets/apple.mp4", help="path to a video", ) parser.add_argument( "--mask_path", default="./assets/apple_mask.png", help="path to a segmentation mask", ) parser.add_argument( "--checkpoint", default="./checkpoints/cotracker_stride_4_wind_8.pth", help="cotracker model", ) parser.add_argument("--grid_size", type=int, default=0, help="Regular grid size") parser.add_argument( "--grid_query_frame", type=int, default=0, help="Compute dense and grid tracks starting from this frame ", ) parser.add_argument( "--backward_tracking", action="store_true", help="Compute tracks in both directions, not only forward", ) args = parser.parse_args() # load the input video frame by frame video = read_video(args.video_path) video = video[0].permute(0, 3, 1, 2)[None].float() segm_mask = np.array(Image.open(os.path.join(args.mask_path))) segm_mask = torch.from_numpy(segm_mask)[None, None] model = CoTrackerPredictor(checkpoint=args.checkpoint) pred_tracks, pred_visibility = model( video, grid_size=args.grid_size, grid_query_frame=args.grid_query_frame, backward_tracking=args.backward_tracking, # segm_mask=segm_mask ) print("computed") # save a video with predicted tracks seq_name = args.video_path.split("/")[-1] vis = Visualizer(save_dir="./saved_videos", pad_value=120, linewidth=3) vis.visualize(video, pred_tracks, query_frame=args.grid_query_frame)