release cotracker 2.0
This commit is contained in:
358
train.py
358
train.py
@@ -25,22 +25,35 @@ from torch.utils.tensorboard import SummaryWriter
|
||||
from pytorch_lightning.lite import LightningLite
|
||||
|
||||
from cotracker.models.evaluation_predictor import EvaluationPredictor
|
||||
from cotracker.models.core.cotracker.cotracker import CoTracker
|
||||
from cotracker.models.core.cotracker.cotracker import CoTracker2
|
||||
from cotracker.utils.visualizer import Visualizer
|
||||
from cotracker.datasets.tap_vid_datasets import TapVidDataset
|
||||
from cotracker.datasets.badja_dataset import BadjaDataset
|
||||
from cotracker.datasets.fast_capture_dataset import FastCaptureDataset
|
||||
|
||||
from cotracker.datasets.dr_dataset import DynamicReplicaDataset
|
||||
from cotracker.evaluation.core.evaluator import Evaluator
|
||||
from cotracker.datasets import kubric_movif_dataset
|
||||
from cotracker.datasets.utils import collate_fn, collate_fn_train, dataclass_to_cuda_
|
||||
from cotracker.models.core.cotracker.losses import sequence_loss, balanced_ce_loss
|
||||
|
||||
|
||||
# define the handler function
|
||||
# for training on a slurm cluster
|
||||
def sig_handler(signum, frame):
|
||||
print("caught signal", signum)
|
||||
print(socket.gethostname(), "USR1 signal caught.")
|
||||
# do other stuff to cleanup here
|
||||
print("requeuing job " + os.environ["SLURM_JOB_ID"])
|
||||
os.system("scontrol requeue " + os.environ["SLURM_JOB_ID"])
|
||||
sys.exit(-1)
|
||||
|
||||
|
||||
def term_handler(signum, frame):
|
||||
print("bypassing sigterm", flush=True)
|
||||
|
||||
|
||||
def fetch_optimizer(args, model):
|
||||
"""Create the optimizer and learning rate scheduler"""
|
||||
optimizer = optim.AdamW(
|
||||
model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=1e-8
|
||||
)
|
||||
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=1e-8)
|
||||
scheduler = optim.lr_scheduler.OneCycleLR(
|
||||
optimizer,
|
||||
args.lr,
|
||||
@@ -53,69 +66,61 @@ def fetch_optimizer(args, model):
|
||||
return optimizer, scheduler
|
||||
|
||||
|
||||
def forward_batch(batch, model, args, loss_fn=None, writer=None, step=0):
|
||||
rgbs = batch.video
|
||||
def forward_batch(batch, model, args):
|
||||
video = batch.video
|
||||
trajs_g = batch.trajectory
|
||||
vis_g = batch.visibility
|
||||
valids = batch.valid
|
||||
B, T, C, H, W = rgbs.shape
|
||||
B, T, C, H, W = video.shape
|
||||
assert C == 3
|
||||
B, T, N, D = trajs_g.shape
|
||||
device = rgbs.device
|
||||
device = video.device
|
||||
|
||||
__, first_positive_inds = torch.max(vis_g, dim=1)
|
||||
# We want to make sure that during training the model sees visible points
|
||||
# that it does not need to track just yet: they are visible but queried from a later frame
|
||||
N_rand = N // 4
|
||||
# inds of visible points in the 1st frame
|
||||
nonzero_inds = [torch.nonzero(vis_g[0, :, i]) for i in range(N)]
|
||||
rand_vis_inds = torch.cat(
|
||||
[
|
||||
nonzero_row[torch.randint(len(nonzero_row), size=(1,))]
|
||||
for nonzero_row in nonzero_inds
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
first_positive_inds = torch.cat(
|
||||
[rand_vis_inds[:, :N_rand], first_positive_inds[:, N_rand:]], dim=1
|
||||
)
|
||||
nonzero_inds = [[torch.nonzero(vis_g[b, :, i]) for i in range(N)] for b in range(B)]
|
||||
|
||||
for b in range(B):
|
||||
rand_vis_inds = torch.cat(
|
||||
[
|
||||
nonzero_row[torch.randint(len(nonzero_row), size=(1,))]
|
||||
for nonzero_row in nonzero_inds[b]
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
first_positive_inds[b] = torch.cat(
|
||||
[rand_vis_inds[:, :N_rand], first_positive_inds[b : b + 1, N_rand:]], dim=1
|
||||
)
|
||||
|
||||
ind_array_ = torch.arange(T, device=device)
|
||||
ind_array_ = ind_array_[None, :, None].repeat(B, 1, N)
|
||||
assert torch.allclose(
|
||||
vis_g[ind_array_ == first_positive_inds[:, None, :]],
|
||||
torch.ones_like(vis_g),
|
||||
)
|
||||
assert torch.allclose(
|
||||
vis_g[ind_array_ == rand_vis_inds[:, None, :]], torch.ones_like(vis_g)
|
||||
)
|
||||
|
||||
gather = torch.gather(
|
||||
trajs_g, 1, first_positive_inds[:, :, None, None].repeat(1, 1, N, 2)
|
||||
torch.ones(1, device=device),
|
||||
)
|
||||
gather = torch.gather(trajs_g, 1, first_positive_inds[:, :, None, None].repeat(1, 1, N, D))
|
||||
xys = torch.diagonal(gather, dim1=1, dim2=2).permute(0, 2, 1)
|
||||
|
||||
queries = torch.cat([first_positive_inds[:, :, None], xys], dim=2)
|
||||
queries = torch.cat([first_positive_inds[:, :, None], xys[:, :, :2]], dim=2)
|
||||
|
||||
predictions, __, visibility, train_data = model(
|
||||
rgbs=rgbs, queries=queries, iters=args.train_iters, is_train=True
|
||||
predictions, visibility, train_data = model(
|
||||
video=video, queries=queries, iters=args.train_iters, is_train=True
|
||||
)
|
||||
vis_predictions, coord_predictions, wind_inds, sort_inds = train_data
|
||||
|
||||
trajs_g = trajs_g[:, :, sort_inds]
|
||||
vis_g = vis_g[:, :, sort_inds]
|
||||
valids = valids[:, :, sort_inds]
|
||||
coord_predictions, vis_predictions, valid_mask = train_data
|
||||
|
||||
vis_gts = []
|
||||
traj_gts = []
|
||||
valids_gts = []
|
||||
|
||||
for i, wind_idx in enumerate(wind_inds):
|
||||
ind = i * (args.sliding_window_len // 2)
|
||||
|
||||
vis_gts.append(vis_g[:, ind : ind + args.sliding_window_len, :wind_idx])
|
||||
traj_gts.append(trajs_g[:, ind : ind + args.sliding_window_len, :wind_idx])
|
||||
valids_gts.append(valids[:, ind : ind + args.sliding_window_len, :wind_idx])
|
||||
|
||||
S = args.sliding_window_len
|
||||
for ind in range(0, args.sequence_len - S // 2, S // 2):
|
||||
vis_gts.append(vis_g[:, ind : ind + S])
|
||||
traj_gts.append(trajs_g[:, ind : ind + S])
|
||||
valids_gts.append(valids[:, ind : ind + S] * valid_mask[:, ind : ind + S])
|
||||
|
||||
seq_loss = sequence_loss(coord_predictions, traj_gts, vis_gts, valids_gts, 0.8)
|
||||
vis_loss = balanced_ce_loss(vis_predictions, vis_gts, valids_gts)
|
||||
|
||||
@@ -131,9 +136,17 @@ def forward_batch(batch, model, args, loss_fn=None, writer=None, step=0):
|
||||
def run_test_eval(evaluator, model, dataloaders, writer, step):
|
||||
model.eval()
|
||||
for ds_name, dataloader in dataloaders:
|
||||
visualize_every = 1
|
||||
grid_size = 5
|
||||
if ds_name == "dynamic_replica":
|
||||
visualize_every = 8
|
||||
grid_size = 0
|
||||
elif "tapvid" in ds_name:
|
||||
visualize_every = 5
|
||||
|
||||
predictor = EvaluationPredictor(
|
||||
model.module.module,
|
||||
grid_size=6,
|
||||
grid_size=grid_size,
|
||||
local_grid_size=0,
|
||||
single_point=False,
|
||||
n_iters=6,
|
||||
@@ -148,37 +161,23 @@ def run_test_eval(evaluator, model, dataloaders, writer, step):
|
||||
train_mode=True,
|
||||
writer=writer,
|
||||
step=step,
|
||||
visualize_every=visualize_every,
|
||||
)
|
||||
|
||||
if ds_name == "badja" or ds_name == "fastcapture" or ("kubric" in ds_name):
|
||||
|
||||
metrics = {
|
||||
**{
|
||||
f"{ds_name}_avg": np.mean(
|
||||
[v for k, v in metrics.items() if "accuracy" not in k]
|
||||
)
|
||||
},
|
||||
**{
|
||||
f"{ds_name}_avg_accuracy": np.mean(
|
||||
[v for k, v in metrics.items() if "accuracy" in k]
|
||||
)
|
||||
},
|
||||
}
|
||||
print("avg", np.mean([v for v in metrics.values()]))
|
||||
if ds_name == "dynamic_replica" or ds_name == "kubric":
|
||||
metrics = {f"{ds_name}_avg_{k}": v for k, v in metrics["avg"].items()}
|
||||
|
||||
if "tapvid" in ds_name:
|
||||
metrics = {
|
||||
f"{ds_name}_avg_OA": metrics["avg"]["occlusion_accuracy"] * 100,
|
||||
f"{ds_name}_avg_delta": metrics["avg"]["average_pts_within_thresh"]
|
||||
* 100,
|
||||
f"{ds_name}_avg_Jaccard": metrics["avg"]["average_jaccard"] * 100,
|
||||
f"{ds_name}_avg_OA": metrics["avg"]["occlusion_accuracy"],
|
||||
f"{ds_name}_avg_delta": metrics["avg"]["average_pts_within_thresh"],
|
||||
f"{ds_name}_avg_Jaccard": metrics["avg"]["average_jaccard"],
|
||||
}
|
||||
|
||||
writer.add_scalars(f"Eval", metrics, step)
|
||||
writer.add_scalars(f"Eval_{ds_name}", metrics, step)
|
||||
|
||||
|
||||
class Logger:
|
||||
|
||||
SUM_FREQ = 100
|
||||
|
||||
def __init__(self, model, scheduler):
|
||||
@@ -190,24 +189,19 @@ class Logger:
|
||||
|
||||
def _print_training_status(self):
|
||||
metrics_data = [
|
||||
self.running_loss[k] / Logger.SUM_FREQ
|
||||
for k in sorted(self.running_loss.keys())
|
||||
self.running_loss[k] / Logger.SUM_FREQ for k in sorted(self.running_loss.keys())
|
||||
]
|
||||
training_str = "[{:6d}] ".format(self.total_steps + 1)
|
||||
metrics_str = ("{:10.4f}, " * len(metrics_data)).format(*metrics_data)
|
||||
|
||||
# print the training status
|
||||
logging.info(
|
||||
f"Training Metrics ({self.total_steps}): {training_str + metrics_str}"
|
||||
)
|
||||
logging.info(f"Training Metrics ({self.total_steps}): {training_str + metrics_str}")
|
||||
|
||||
if self.writer is None:
|
||||
self.writer = SummaryWriter(log_dir=os.path.join(args.ckpt_path, "runs"))
|
||||
|
||||
for k in self.running_loss:
|
||||
self.writer.add_scalar(
|
||||
k, self.running_loss[k] / Logger.SUM_FREQ, self.total_steps
|
||||
)
|
||||
self.writer.add_scalar(k, self.running_loss[k] / Logger.SUM_FREQ, self.total_steps)
|
||||
self.running_loss[k] = 0.0
|
||||
|
||||
def push(self, metrics, task):
|
||||
@@ -249,79 +243,56 @@ class Lite(LightningLite):
|
||||
seed_everything(0)
|
||||
|
||||
def seed_worker(worker_id):
|
||||
worker_seed = torch.initial_seed() % 2 ** 32
|
||||
worker_seed = torch.initial_seed() % 2**32
|
||||
np.random.seed(worker_seed)
|
||||
random.seed(worker_seed)
|
||||
|
||||
g = torch.Generator()
|
||||
g.manual_seed(0)
|
||||
if self.global_rank == 0:
|
||||
eval_dataloaders = []
|
||||
if "dynamic_replica" in args.eval_datasets:
|
||||
eval_dataset = DynamicReplicaDataset(
|
||||
sample_len=60, only_first_n_samples=1, rgbd_input=False
|
||||
)
|
||||
eval_dataloader_dr = torch.utils.data.DataLoader(
|
||||
eval_dataset,
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
num_workers=1,
|
||||
collate_fn=collate_fn,
|
||||
)
|
||||
eval_dataloaders.append(("dynamic_replica", eval_dataloader_dr))
|
||||
|
||||
eval_dataloaders = []
|
||||
if "badja" in args.eval_datasets:
|
||||
eval_dataset = BadjaDataset(
|
||||
data_root=os.path.join(args.dataset_root, "BADJA"),
|
||||
max_seq_len=args.eval_max_seq_len,
|
||||
dataset_resolution=args.crop_size,
|
||||
if "tapvid_davis_first" in args.eval_datasets:
|
||||
data_root = os.path.join(args.dataset_root, "tapvid/tapvid_davis/tapvid_davis.pkl")
|
||||
eval_dataset = TapVidDataset(dataset_type="davis", data_root=data_root)
|
||||
eval_dataloader_tapvid_davis = torch.utils.data.DataLoader(
|
||||
eval_dataset,
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
num_workers=1,
|
||||
collate_fn=collate_fn,
|
||||
)
|
||||
eval_dataloaders.append(("tapvid_davis", eval_dataloader_tapvid_davis))
|
||||
|
||||
evaluator = Evaluator(args.ckpt_path)
|
||||
|
||||
visualizer = Visualizer(
|
||||
save_dir=args.ckpt_path,
|
||||
pad_value=80,
|
||||
fps=1,
|
||||
show_first_frame=0,
|
||||
tracks_leave_trace=0,
|
||||
)
|
||||
eval_dataloader_badja = torch.utils.data.DataLoader(
|
||||
eval_dataset,
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
num_workers=8,
|
||||
collate_fn=collate_fn,
|
||||
)
|
||||
eval_dataloaders.append(("badja", eval_dataloader_badja))
|
||||
|
||||
if "fastcapture" in args.eval_datasets:
|
||||
eval_dataset = FastCaptureDataset(
|
||||
data_root=os.path.join(args.dataset_root, "fastcapture"),
|
||||
max_seq_len=min(100, args.eval_max_seq_len),
|
||||
max_num_points=40,
|
||||
dataset_resolution=args.crop_size,
|
||||
)
|
||||
eval_dataloader_fastcapture = torch.utils.data.DataLoader(
|
||||
eval_dataset,
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
num_workers=1,
|
||||
collate_fn=collate_fn,
|
||||
)
|
||||
eval_dataloaders.append(("fastcapture", eval_dataloader_fastcapture))
|
||||
|
||||
if "tapvid_davis_first" in args.eval_datasets:
|
||||
data_root = os.path.join(args.dataset_root, "tapvid_davis/tapvid_davis.pkl")
|
||||
eval_dataset = TapVidDataset(dataset_type="davis", data_root=data_root)
|
||||
eval_dataloader_tapvid_davis = torch.utils.data.DataLoader(
|
||||
eval_dataset,
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
num_workers=1,
|
||||
collate_fn=collate_fn,
|
||||
)
|
||||
eval_dataloaders.append(("tapvid_davis", eval_dataloader_tapvid_davis))
|
||||
|
||||
evaluator = Evaluator(args.ckpt_path)
|
||||
|
||||
visualizer = Visualizer(
|
||||
save_dir=args.ckpt_path,
|
||||
pad_value=80,
|
||||
fps=1,
|
||||
show_first_frame=0,
|
||||
tracks_leave_trace=0,
|
||||
)
|
||||
|
||||
loss_fn = None
|
||||
|
||||
if args.model_name == "cotracker":
|
||||
|
||||
model = CoTracker(
|
||||
model = CoTracker2(
|
||||
stride=args.model_stride,
|
||||
S=args.sliding_window_len,
|
||||
window_len=args.sliding_window_len,
|
||||
add_space_attn=not args.remove_space_attn,
|
||||
num_heads=args.updateformer_num_heads,
|
||||
hidden_size=args.updateformer_hidden_size,
|
||||
space_depth=args.updateformer_space_depth,
|
||||
time_depth=args.updateformer_time_depth,
|
||||
num_virtual_tracks=args.num_virtual_tracks,
|
||||
model_resolution=args.crop_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Model {args.model_name} doesn't exist")
|
||||
@@ -332,7 +303,7 @@ class Lite(LightningLite):
|
||||
model.cuda()
|
||||
|
||||
train_dataset = kubric_movif_dataset.KubricMovifDataset(
|
||||
data_root=os.path.join(args.dataset_root, "kubric_movi_f"),
|
||||
data_root=os.path.join(args.dataset_root, "kubric", "kubric_movi_f_tracks"),
|
||||
crop_size=args.crop_size,
|
||||
seq_len=args.sequence_len,
|
||||
traj_per_sample=args.traj_per_sample,
|
||||
@@ -357,7 +328,8 @@ class Lite(LightningLite):
|
||||
optimizer, scheduler = fetch_optimizer(args, model)
|
||||
|
||||
total_steps = 0
|
||||
logger = Logger(model, scheduler)
|
||||
if self.global_rank == 0:
|
||||
logger = Logger(model, scheduler)
|
||||
|
||||
folder_ckpts = [
|
||||
f
|
||||
@@ -383,9 +355,7 @@ class Lite(LightningLite):
|
||||
logging.info(f"Load total_steps {total_steps}")
|
||||
|
||||
elif args.restore_ckpt is not None:
|
||||
assert args.restore_ckpt.endswith(".pth") or args.restore_ckpt.endswith(
|
||||
".pt"
|
||||
)
|
||||
assert args.restore_ckpt.endswith(".pth") or args.restore_ckpt.endswith(".pt")
|
||||
logging.info("Loading checkpoint...")
|
||||
|
||||
strict = True
|
||||
@@ -394,9 +364,7 @@ class Lite(LightningLite):
|
||||
state_dict = state_dict["model"]
|
||||
|
||||
if list(state_dict.keys())[0].startswith("module."):
|
||||
state_dict = {
|
||||
k.replace("module.", ""): v for k, v in state_dict.items()
|
||||
}
|
||||
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
|
||||
model.load_state_dict(state_dict, strict=strict)
|
||||
|
||||
logging.info(f"Done loading checkpoint")
|
||||
@@ -424,33 +392,22 @@ class Lite(LightningLite):
|
||||
|
||||
assert model.training
|
||||
|
||||
output = forward_batch(
|
||||
batch,
|
||||
model,
|
||||
args,
|
||||
loss_fn=loss_fn,
|
||||
writer=logger.writer,
|
||||
step=total_steps,
|
||||
)
|
||||
output = forward_batch(batch, model, args)
|
||||
|
||||
loss = 0
|
||||
for k, v in output.items():
|
||||
if "loss" in v:
|
||||
loss += v["loss"]
|
||||
logger.writer.add_scalar(
|
||||
f"live_{k}_loss", v["loss"].item(), total_steps
|
||||
)
|
||||
if "metrics" in v:
|
||||
logger.push(v["metrics"], k)
|
||||
|
||||
if self.global_rank == 0:
|
||||
if total_steps % save_freq == save_freq - 1:
|
||||
if args.model_name == "motion_diffuser":
|
||||
pred_coords = model.module.module.forward_batch_test(
|
||||
batch, interp_shape=args.crop_size
|
||||
for k, v in output.items():
|
||||
if "loss" in v:
|
||||
logger.writer.add_scalar(
|
||||
f"live_{k}_loss", v["loss"].item(), total_steps
|
||||
)
|
||||
|
||||
output["flow"] = {"predictions": pred_coords[0].detach()}
|
||||
if "metrics" in v:
|
||||
logger.push(v["metrics"], k)
|
||||
if total_steps % save_freq == save_freq - 1:
|
||||
visualizer.visualize(
|
||||
video=batch.video.clone(),
|
||||
tracks=batch.trajectory.clone(),
|
||||
@@ -468,9 +425,7 @@ class Lite(LightningLite):
|
||||
)
|
||||
|
||||
if len(output) > 1:
|
||||
logger.writer.add_scalar(
|
||||
f"live_total_loss", loss.item(), total_steps
|
||||
)
|
||||
logger.writer.add_scalar(f"live_total_loss", loss.item(), total_steps)
|
||||
logger.writer.add_scalar(
|
||||
f"learning_rate", optimizer.param_groups[0]["lr"], total_steps
|
||||
)
|
||||
@@ -492,9 +447,7 @@ class Lite(LightningLite):
|
||||
total_steps == 1 and args.validate_at_start
|
||||
):
|
||||
if (epoch + 1) % args.save_every_n_epoch == 0:
|
||||
ckpt_iter = "0" * (6 - len(str(total_steps))) + str(
|
||||
total_steps
|
||||
)
|
||||
ckpt_iter = "0" * (6 - len(str(total_steps))) + str(total_steps)
|
||||
save_path = Path(
|
||||
f"{args.ckpt_path}/model_{args.model_name}_{ckpt_iter}.pth"
|
||||
)
|
||||
@@ -526,16 +479,18 @@ class Lite(LightningLite):
|
||||
if total_steps > args.num_steps:
|
||||
should_keep_training = False
|
||||
break
|
||||
if self.global_rank == 0:
|
||||
print("FINISHED TRAINING")
|
||||
|
||||
print("FINISHED TRAINING")
|
||||
|
||||
PATH = f"{args.ckpt_path}/{args.model_name}_final.pth"
|
||||
torch.save(model.module.module.state_dict(), PATH)
|
||||
run_test_eval(evaluator, model, eval_dataloaders, logger.writer, total_steps)
|
||||
logger.close()
|
||||
PATH = f"{args.ckpt_path}/{args.model_name}_final.pth"
|
||||
torch.save(model.module.module.state_dict(), PATH)
|
||||
run_test_eval(evaluator, model, eval_dataloaders, logger.writer, total_steps)
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
signal.signal(signal.SIGUSR1, sig_handler)
|
||||
signal.signal(signal.SIGTERM, term_handler)
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model_name", default="cotracker", help="model name")
|
||||
parser.add_argument("--restore_ckpt", help="path to restore a checkpoint")
|
||||
@@ -543,17 +498,12 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--batch_size", type=int, default=4, help="batch size used during training."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_workers", type=int, default=6, help="number of dataloader workers"
|
||||
)
|
||||
parser.add_argument("--num_nodes", type=int, default=1)
|
||||
parser.add_argument("--num_workers", type=int, default=10, help="number of dataloader workers")
|
||||
|
||||
parser.add_argument(
|
||||
"--mixed_precision", action="store_true", help="use mixed precision"
|
||||
)
|
||||
parser.add_argument("--mixed_precision", action="store_true", help="use mixed precision")
|
||||
parser.add_argument("--lr", type=float, default=0.0005, help="max learning rate.")
|
||||
parser.add_argument(
|
||||
"--wdecay", type=float, default=0.00001, help="Weight decay in optimizer."
|
||||
)
|
||||
parser.add_argument("--wdecay", type=float, default=0.00001, help="Weight decay in optimizer.")
|
||||
parser.add_argument(
|
||||
"--num_steps", type=int, default=200000, help="length of training schedule."
|
||||
)
|
||||
@@ -596,13 +546,11 @@ if __name__ == "__main__":
|
||||
default=4,
|
||||
help="number of updates to the disparity field in each forward pass.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sequence_len", type=int, default=8, help="train sequence length"
|
||||
)
|
||||
parser.add_argument("--sequence_len", type=int, default=8, help="train sequence length")
|
||||
parser.add_argument(
|
||||
"--eval_datasets",
|
||||
nargs="+",
|
||||
default=["things", "badja"],
|
||||
default=["tapvid_davis_first"],
|
||||
help="what datasets to use for evaluation",
|
||||
)
|
||||
|
||||
@@ -611,6 +559,12 @@ if __name__ == "__main__":
|
||||
action="store_true",
|
||||
help="remove space attention from CoTracker",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_virtual_tracks",
|
||||
type=int,
|
||||
default=None,
|
||||
help="stride of the CoTracker feature network",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dont_use_augs",
|
||||
action="store_true",
|
||||
@@ -627,30 +581,6 @@ if __name__ == "__main__":
|
||||
default=8,
|
||||
help="length of the CoTracker sliding window",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--updateformer_hidden_size",
|
||||
type=int,
|
||||
default=384,
|
||||
help="hidden dimension of the CoTracker transformer model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--updateformer_num_heads",
|
||||
type=int,
|
||||
default=8,
|
||||
help="number of heads of the CoTracker transformer model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--updateformer_space_depth",
|
||||
type=int,
|
||||
default=12,
|
||||
help="number of group attention layers in the CoTracker transformer model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--updateformer_time_depth",
|
||||
type=int,
|
||||
default=12,
|
||||
help="number of time attention layers in the CoTracker transformer model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_stride",
|
||||
type=int,
|
||||
@@ -680,9 +610,9 @@ if __name__ == "__main__":
|
||||
from pytorch_lightning.strategies import DDPStrategy
|
||||
|
||||
Lite(
|
||||
strategy=DDPStrategy(find_unused_parameters=True),
|
||||
strategy=DDPStrategy(find_unused_parameters=False),
|
||||
devices="auto",
|
||||
accelerator="gpu",
|
||||
precision=32,
|
||||
# num_nodes=4,
|
||||
num_nodes=args.num_nodes,
|
||||
).run(args)
|
||||
|
||||
Reference in New Issue
Block a user