Support GDAS (FRC), see details in docs/CVPR-2019-GDAS.md

This commit is contained in:
D-X-Y
2020-08-18 00:50:33 +00:00
parent 75eefa3d44
commit ffd23a6cbd
7 changed files with 212 additions and 17 deletions

View File

@@ -4,7 +4,7 @@
import torch
import torch.nn as nn
__all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames']
__all__ = ['OPS', 'RAW_OP_CLASSES', 'ResNetBasicblock', 'SearchSpaceNames']
OPS = {
'none' : lambda C_in, C_out, stride, affine, track_running_stats: Zero(C_in, C_out, stride),
@@ -175,7 +175,7 @@ class FactorizedReduce(nn.Module):
self.convs.append(nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=not affine))
self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
elif stride == 1:
self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=False)
self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=not affine)
else:
raise ValueError('Invalid stride : {:}'.format(stride))
self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats)
@@ -256,41 +256,44 @@ def drop_path(x, drop_prob):
# Searching for A Robust Neural Architecture in Four GPU Hours
class GDAS_Reduction_Cell(nn.Module):
def __init__(self, C_prev_prev, C_prev, C, reduction_prev, multiplier, affine, track_running_stats):
def __init__(self, C_prev_prev, C_prev, C, reduction_prev, affine, track_running_stats):
super(GDAS_Reduction_Cell, self).__init__()
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, 2, affine, track_running_stats)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, 1, affine, track_running_stats)
self.multiplier = multiplier
self.reduction = True
self.ops1 = nn.ModuleList(
[nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False),
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False),
nn.BatchNorm2d(C, affine=True),
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=not affine),
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=not affine),
nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats),
nn.ReLU(inplace=False),
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(C, affine=True)),
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine),
nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats)),
nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False),
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False),
nn.BatchNorm2d(C, affine=True),
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=not affine),
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=not affine),
nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats),
nn.ReLU(inplace=False),
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(C, affine=True))])
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine),
nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats))])
self.ops2 = nn.ModuleList(
[nn.Sequential(
nn.MaxPool2d(3, stride=1, padding=1),
nn.BatchNorm2d(C, affine=True)),
nn.MaxPool2d(3, stride=2, padding=1),
nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats)),
nn.Sequential(
nn.MaxPool2d(3, stride=2, padding=1),
nn.BatchNorm2d(C, affine=True))])
nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats))])
@property
def multiplier(self):
return 4
def forward(self, s0, s1, drop_prob = -1):
s0 = self.preprocess0(s0)
@@ -307,3 +310,10 @@ class GDAS_Reduction_Cell(nn.Module):
if self.training and drop_prob > 0.:
X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob)
return torch.cat([X0, X1, X2, X3], dim=1)
# To manage the useful classes in this file.
RAW_OP_CLASSES = {
'gdas_reduction': GDAS_Reduction_Cell
}

View File

@@ -11,6 +11,7 @@ from .generic_model import GenericNAS201Model
from .genotypes import Structure as CellStructure, architectures as CellArchitectures
# NASNet-based macro structure
from .search_model_gdas_nasnet import NASNetworkGDAS
from .search_model_gdas_frc_nasnet import NASNetworkGDAS_FRC
from .search_model_darts_nasnet import NASNetworkDARTS
@@ -23,4 +24,5 @@ nas201_super_nets = {'DARTS-V1': TinyNetworkDarts,
"generic": GenericNAS201Model}
nasnet_super_nets = {"GDAS": NASNetworkGDAS,
"GDAS_FRC": NASNetworkGDAS_FRC,
"DARTS": NASNetworkDARTS}

View File

@@ -163,6 +163,10 @@ class NASNetSearchCell(nn.Module):
self.edge2index = {key:i for i, key in enumerate(self.edge_keys)}
self.num_edges = len(self.edges)
@property
def multiplier(self):
return self._multiplier
def forward_gdas(self, s0, s1, weightss, indexs):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)

View File

@@ -0,0 +1,125 @@
###########################################################################
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
###########################################################################
import torch
import torch.nn as nn
from copy import deepcopy
from models.cell_searchs.search_cells import NASNetSearchCell as SearchCell
from models.cell_operations import RAW_OP_CLASSES
# The macro structure is based on NASNet
class NASNetworkGDAS_FRC(nn.Module):
def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats):
super(NASNetworkGDAS_FRC, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C*stem_multiplier))
# config for each layer
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = RAW_OP_CLASSES['gdas_reduction'](C_prev_prev, C_prev, C_curr, reduction_prev, affine, track_running_stats)
else:
cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert reduction or num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev_prev, C_prev, reduction_prev = C_prev, cell.multiplier * C_curr, reduction
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.tau = 10
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def get_alphas(self):
return [self.arch_parameters]
def show_alphas(self):
with torch.no_grad():
A = 'arch-normal-parameters :\n{:}'.format(nn.functional.softmax(self.arch_parameters, dim=-1).cpu())
return '{:}'.format(A)
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def genotype(self):
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2+i):
node_str = '{:}<-{:}'.format(i, j)
ws = weights[ self.edge2index[node_str] ]
for k, op_name in enumerate(self.op_names):
if op_name == 'none': continue
edges.append( (op_name, j, ws[k]) )
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append( tuple(selected_edges) )
return gene
with torch.no_grad():
gene_normal = _parse(torch.softmax(self.arch_parameters, dim=-1).cpu().numpy())
return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
def forward(self, inputs):
def get_gumbel_prob(xins):
while True:
gumbels = -torch.empty_like(xins).exponential_().log()
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
continue
else: break
return hardwts, index
hardwts, index = get_gumbel_prob(self.arch_parameters)
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
s0, s1 = s1, cell(s0, s1)
else:
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
out = self.lastact(s1)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits