Reformulate via black

This commit is contained in:
D-X-Y
2021-03-17 09:25:58 +00:00
parent a9093e41e1
commit f98edea22a
59 changed files with 12289 additions and 8918 deletions

View File

@@ -15,10 +15,13 @@ from pathlib import Path
from collections import OrderedDict
import matplotlib
import seaborn as sns
matplotlib.use('agg')
matplotlib.use("agg")
import matplotlib.pyplot as plt
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from log_utils import time_string
from nats_bench import create
from models import get_cell_based_tiny_net
@@ -38,111 +41,125 @@ def tostr(accdict, norms):
return ' '.join(xstr)
"""
def evaluate(api, weight_dir, data: str):
print('\nEvaluate dataset={:}'.format(data))
process = psutil.Process(os.getpid())
norms, accuracies = [], []
ok, total = 0, 5000
for idx in range(total):
arch_index = api.random()
api.reload(weight_dir, arch_index)
# compute the weight watcher results
config = api.get_net_config(arch_index, data)
net = get_cell_based_tiny_net(config)
meta_info = api.query_meta_info_by_index(arch_index, hp='200' if api.search_space_name == 'topology' else '90')
params = meta_info.get_net_param(data, 888 if api.search_space_name == 'topology' else 777)
with torch.no_grad():
net.load_state_dict(params)
_, summary = weight_watcher.analyze(net, alphas=False)
if 'lognorm' not in summary:
print("\nEvaluate dataset={:}".format(data))
process = psutil.Process(os.getpid())
norms, accuracies = [], []
ok, total = 0, 5000
for idx in range(total):
arch_index = api.random()
api.reload(weight_dir, arch_index)
# compute the weight watcher results
config = api.get_net_config(arch_index, data)
net = get_cell_based_tiny_net(config)
meta_info = api.query_meta_info_by_index(arch_index, hp="200" if api.search_space_name == "topology" else "90")
params = meta_info.get_net_param(data, 888 if api.search_space_name == "topology" else 777)
with torch.no_grad():
net.load_state_dict(params)
_, summary = weight_watcher.analyze(net, alphas=False)
if "lognorm" not in summary:
api.clear_params(arch_index, None)
del net
continue
continue
cur_norm = -summary["lognorm"]
api.clear_params(arch_index, None)
del net ; continue
continue
cur_norm = -summary['lognorm']
api.clear_params(arch_index, None)
if math.isnan(cur_norm):
del net, meta_info
continue
else:
ok += 1
norms.append(cur_norm)
# query the accuracy
info = meta_info.get_metrics(data, 'ori-test', iepoch=None, is_random=888 if api.search_space_name == 'topology' else 777)
accuracies.append(info['accuracy'])
del net, meta_info
# print the information
if idx % 20 == 0:
gc.collect()
print('{:} {:04d}_{:04d}/{:04d} ({:.2f} MB memory)'.format(time_string(), ok, idx, total, process.memory_info().rss / 1e6))
return norms, accuracies
if math.isnan(cur_norm):
del net, meta_info
continue
else:
ok += 1
norms.append(cur_norm)
# query the accuracy
info = meta_info.get_metrics(
data, "ori-test", iepoch=None, is_random=888 if api.search_space_name == "topology" else 777
)
accuracies.append(info["accuracy"])
del net, meta_info
# print the information
if idx % 20 == 0:
gc.collect()
print(
"{:} {:04d}_{:04d}/{:04d} ({:.2f} MB memory)".format(
time_string(), ok, idx, total, process.memory_info().rss / 1e6
)
)
return norms, accuracies
def main(search_space, meta_file: str, weight_dir, save_dir, xdata):
save_dir.mkdir(parents=True, exist_ok=True)
api = create(meta_file, search_space, verbose=False)
datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']
print(time_string() + ' ' + '='*50)
for data in datasets:
hps = api.avaliable_hps
for hp in hps:
nums = api.statistics(data, hp=hp)
total = sum([k*v for k, v in nums.items()])
print('Using {:3s} epochs, trained on {:20s} : {:} trials in total ({:}).'.format(hp, data, total, nums))
print(time_string() + ' ' + '='*50)
save_dir.mkdir(parents=True, exist_ok=True)
api = create(meta_file, search_space, verbose=False)
datasets = ["cifar10-valid", "cifar10", "cifar100", "ImageNet16-120"]
print(time_string() + " " + "=" * 50)
for data in datasets:
hps = api.avaliable_hps
for hp in hps:
nums = api.statistics(data, hp=hp)
total = sum([k * v for k, v in nums.items()])
print("Using {:3s} epochs, trained on {:20s} : {:} trials in total ({:}).".format(hp, data, total, nums))
print(time_string() + " " + "=" * 50)
norms, accuracies = evaluate(api, weight_dir, xdata)
norms, accuracies = evaluate(api, weight_dir, xdata)
indexes = list(range(len(norms)))
norm_indexes = sorted(indexes, key=lambda i: norms[i])
accy_indexes = sorted(indexes, key=lambda i: accuracies[i])
labels = []
for index in norm_indexes:
labels.append(accy_indexes.index(index))
indexes = list(range(len(norms)))
norm_indexes = sorted(indexes, key=lambda i: norms[i])
accy_indexes = sorted(indexes, key=lambda i: accuracies[i])
labels = []
for index in norm_indexes:
labels.append(accy_indexes.index(index))
dpi, width, height = 200, 1400, 800
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize = 18, 12
resnet_scale, resnet_alpha = 120, 0.5
dpi, width, height = 200, 1400, 800
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize = 18, 12
resnet_scale, resnet_alpha = 120, 0.5
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(111)
plt.xlim(min(indexes), max(indexes))
plt.ylim(min(indexes), max(indexes))
# plt.ylabel('y').set_rotation(30)
plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//3), fontsize=LegendFontsize, rotation='vertical')
plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize)
ax.scatter(indexes, labels , marker='*', s=0.5, c='tab:red' , alpha=0.8)
ax.scatter(indexes, indexes, marker='o', s=0.5, c='tab:blue' , alpha=0.8)
ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='Test accuracy')
ax.scatter([-1], [-1], marker='*', s=100, c='tab:red' , label='Weight watcher')
plt.grid(zorder=0)
ax.set_axisbelow(True)
plt.legend(loc=0, fontsize=LegendFontsize)
ax.set_xlabel('architecture ranking sorted by the test accuracy ', fontsize=LabelSize)
ax.set_ylabel('architecture ranking computed by weight watcher', fontsize=LabelSize)
save_path = (save_dir / '{:}-{:}-test-ww.pdf'.format(search_space, xdata)).resolve()
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf')
save_path = (save_dir / '{:}-{:}-test-ww.png'.format(search_space, xdata)).resolve()
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
print ('{:} save into {:}'.format(time_string(), save_path))
print('{:} finish this test.'.format(time_string()))
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(111)
plt.xlim(min(indexes), max(indexes))
plt.ylim(min(indexes), max(indexes))
# plt.ylabel('y').set_rotation(30)
plt.yticks(np.arange(min(indexes), max(indexes), max(indexes) // 3), fontsize=LegendFontsize, rotation="vertical")
plt.xticks(np.arange(min(indexes), max(indexes), max(indexes) // 5), fontsize=LegendFontsize)
ax.scatter(indexes, labels, marker="*", s=0.5, c="tab:red", alpha=0.8)
ax.scatter(indexes, indexes, marker="o", s=0.5, c="tab:blue", alpha=0.8)
ax.scatter([-1], [-1], marker="o", s=100, c="tab:blue", label="Test accuracy")
ax.scatter([-1], [-1], marker="*", s=100, c="tab:red", label="Weight watcher")
plt.grid(zorder=0)
ax.set_axisbelow(True)
plt.legend(loc=0, fontsize=LegendFontsize)
ax.set_xlabel("architecture ranking sorted by the test accuracy ", fontsize=LabelSize)
ax.set_ylabel("architecture ranking computed by weight watcher", fontsize=LabelSize)
save_path = (save_dir / "{:}-{:}-test-ww.pdf".format(search_space, xdata)).resolve()
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf")
save_path = (save_dir / "{:}-{:}-test-ww.png".format(search_space, xdata)).resolve()
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
print("{:} save into {:}".format(time_string(), save_path))
print("{:} finish this test.".format(time_string()))
if __name__ == '__main__':
parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
parser.add_argument('--save_dir', type=str, default='./output/vis-nas-bench/', help='The base-name of folder to save checkpoints and log.')
parser.add_argument('--search_space', type=str, default=None, choices=['tss', 'sss'], help='The search space.')
parser.add_argument('--base_path', type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.')
parser.add_argument('--dataset' , type=str, default=None, help='.')
args = parser.parse_args()
if __name__ == "__main__":
parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
parser.add_argument(
"--save_dir",
type=str,
default="./output/vis-nas-bench/",
help="The base-name of folder to save checkpoints and log.",
)
parser.add_argument("--search_space", type=str, default=None, choices=["tss", "sss"], help="The search space.")
parser.add_argument(
"--base_path", type=str, default=None, help="The path to the NAS-Bench-201 benchmark file and weight dir."
)
parser.add_argument("--dataset", type=str, default=None, help=".")
args = parser.parse_args()
save_dir = Path(args.save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
meta_file = Path(args.base_path + '.pth')
weight_dir = Path(args.base_path + '-full')
assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file)
assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir)
main(args.search_space, str(meta_file), weight_dir, save_dir, args.dataset)
save_dir = Path(args.save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
meta_file = Path(args.base_path + ".pth")
weight_dir = Path(args.base_path + "-full")
assert meta_file.exists(), "invalid path for api : {:}".format(meta_file)
assert weight_dir.exists() and weight_dir.is_dir(), "invalid path for weight dir : {:}".format(weight_dir)
main(args.search_space, str(meta_file), weight_dir, save_dir, args.dataset)