Reformulate via black

This commit is contained in:
D-X-Y
2021-03-17 09:25:58 +00:00
parent a9093e41e1
commit f98edea22a
59 changed files with 12289 additions and 8918 deletions

View File

@@ -32,294 +32,420 @@ from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, get_nas_search_loaders
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import count_parameters_in_MB, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
from nats_bench import create
from datasets import get_datasets, get_nas_search_loaders
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import count_parameters_in_MB, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
from nats_bench import create
# Ad-hoc for RL algorithms.
class ExponentialMovingAverage(object):
"""Class that maintains an exponential moving average."""
"""Class that maintains an exponential moving average."""
def __init__(self, momentum):
self._numerator = 0
self._denominator = 0
self._momentum = momentum
def __init__(self, momentum):
self._numerator = 0
self._denominator = 0
self._momentum = momentum
def update(self, value):
self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value
self._denominator = self._momentum * self._denominator + (1 - self._momentum)
def update(self, value):
self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value
self._denominator = self._momentum * self._denominator + (1 - self._momentum)
@property
def value(self):
"""Return the current value of the moving average"""
return self._numerator / self._denominator
@property
def value(self):
"""Return the current value of the moving average"""
return self._numerator / self._denominator
RL_BASELINE_EMA = ExponentialMovingAverage(0.95)
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, enable_controller, algo, epoch_str, print_freq, logger):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
end = time.time()
network.train()
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
scheduler.update(None, 1.0 * step / len(xloader))
base_inputs = base_inputs.cuda(non_blocking=True)
arch_inputs = arch_inputs.cuda(non_blocking=True)
base_targets = base_targets.cuda(non_blocking=True)
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# Update the weights
network.zero_grad()
_, logits, _ = network(base_inputs)
base_loss = criterion(logits, base_targets)
base_loss.backward()
w_optimizer.step()
# record
base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
base_losses.update(base_loss.item(), base_inputs.size(0))
base_top1.update (base_prec1.item(), base_inputs.size(0))
base_top5.update (base_prec5.item(), base_inputs.size(0))
# update the architecture-weight
network.zero_grad()
a_optimizer.zero_grad()
_, logits, log_probs = network(arch_inputs)
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
if algo == 'mask_rl':
with torch.no_grad():
RL_BASELINE_EMA.update(arch_prec1.item())
rl_advantage = arch_prec1 - RL_BASELINE_EMA.value
rl_log_prob = sum(log_probs)
arch_loss = - rl_advantage * rl_log_prob
elif algo == 'tas' or algo == 'mask_gumbel':
arch_loss = criterion(logits, arch_targets)
else:
raise ValueError('invalid algorightm name: {:}'.format(algo))
if enable_controller:
arch_loss.backward()
a_optimizer.step()
# record
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
def search_func(
xloader,
network,
criterion,
scheduler,
w_optimizer,
a_optimizer,
enable_controller,
algo,
epoch_str,
print_freq,
logger,
):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
end = time.time()
network.train()
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
scheduler.update(None, 1.0 * step / len(xloader))
base_inputs = base_inputs.cuda(non_blocking=True)
arch_inputs = arch_inputs.cuda(non_blocking=True)
base_targets = base_targets.cuda(non_blocking=True)
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader))
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5)
Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5)
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr)
return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg
# Update the weights
network.zero_grad()
_, logits, _ = network(base_inputs)
base_loss = criterion(logits, base_targets)
base_loss.backward()
w_optimizer.step()
# record
base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
base_losses.update(base_loss.item(), base_inputs.size(0))
base_top1.update(base_prec1.item(), base_inputs.size(0))
base_top5.update(base_prec5.item(), base_inputs.size(0))
# update the architecture-weight
network.zero_grad()
a_optimizer.zero_grad()
_, logits, log_probs = network(arch_inputs)
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
if algo == "mask_rl":
with torch.no_grad():
RL_BASELINE_EMA.update(arch_prec1.item())
rl_advantage = arch_prec1 - RL_BASELINE_EMA.value
rl_log_prob = sum(log_probs)
arch_loss = -rl_advantage * rl_log_prob
elif algo == "tas" or algo == "mask_gumbel":
arch_loss = criterion(logits, arch_targets)
else:
raise ValueError("invalid algorightm name: {:}".format(algo))
if enable_controller:
arch_loss.backward()
a_optimizer.step()
# record
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = "*SEARCH* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
loss=base_losses, top1=base_top1, top5=base_top5
)
Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
loss=arch_losses, top1=arch_top1, top5=arch_top5
)
logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr)
return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg
def valid_func(xloader, network, criterion, logger):
data_time, batch_time = AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
end = time.time()
with torch.no_grad():
network.eval()
for step, (arch_inputs, arch_targets) in enumerate(xloader):
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# prediction
_, logits, _ = network(arch_inputs.cuda(non_blocking=True))
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return arch_losses.avg, arch_top1.avg, arch_top5.avg
data_time, batch_time = AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
end = time.time()
with torch.no_grad():
network.eval()
for step, (arch_inputs, arch_targets) in enumerate(xloader):
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# prediction
_, logits, _ = network(arch_inputs.cuda(non_blocking=True))
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return arch_losses.avg, arch_top1.avg, arch_top5.avg
def main(xargs):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads( xargs.workers )
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads(xargs.workers)
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
if xargs.overwite_epochs is None:
extra_info = {'class_num': class_num, 'xshape': xshape}
else:
extra_info = {'class_num': class_num, 'xshape': xshape, 'epochs': xargs.overwite_epochs}
config = load_config(xargs.config_path, extra_info, logger)
search_loader, train_loader, valid_loader = get_nas_search_loaders(train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', (config.batch_size, config.test_batch_size), xargs.workers)
logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size))
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
search_space = get_search_spaces(xargs.search_space, 'nats-bench')
model_config = dict2config(
dict(name='generic', super_type='search-shape', candidate_Cs=search_space['candidates'], max_num_Cs=search_space['numbers'], num_classes=class_num,
genotype=args.genotype, affine=bool(xargs.affine), track_running_stats=bool(xargs.track_running_stats)), None)
logger.log('search space : {:}'.format(search_space))
logger.log('model config : {:}'.format(model_config))
search_model = get_cell_based_tiny_net(model_config)
search_model.set_algo(xargs.algo)
logger.log('{:}'.format(search_model))
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.weights, config)
a_optimizer = torch.optim.Adam(search_model.alphas, lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, eps=xargs.arch_eps)
logger.log('w-optimizer : {:}'.format(w_optimizer))
logger.log('a-optimizer : {:}'.format(a_optimizer))
logger.log('w-scheduler : {:}'.format(w_scheduler))
logger.log('criterion : {:}'.format(criterion))
params = count_parameters_in_MB(search_model)
logger.log('The parameters of the search model = {:.2f} MB'.format(params))
logger.log('search-space : {:}'.format(search_space))
if bool(xargs.use_api):
api = create(None, 'size', fast_mode=True, verbose=False)
else:
api = None
logger.log('{:} create API = {:} done'.format(time_string(), api))
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
network, criterion = search_model.cuda(), criterion.cuda() # use a single GPU
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
last_info = torch.load(last_info)
start_epoch = last_info['epoch']
checkpoint = torch.load(last_info['last_checkpoint'])
genotypes = checkpoint['genotypes']
valid_accuracies = checkpoint['valid_accuracies']
search_model.load_state_dict( checkpoint['search_model'] )
w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
w_optimizer.load_state_dict ( checkpoint['w_optimizer'] )
a_optimizer.load_state_dict ( checkpoint['a_optimizer'] )
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {-1: network.random}
# start training
start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = 'Time Left: {:}'.format(convert_secs2time(epoch_time.val * (total_epoch-epoch), True))
epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
if xargs.warmup_ratio is None or xargs.warmup_ratio <= float(epoch) / total_epoch:
enable_controller = True
network.set_warmup_ratio(None)
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
if xargs.overwite_epochs is None:
extra_info = {"class_num": class_num, "xshape": xshape}
else:
enable_controller = False
network.set_warmup_ratio(1.0 - float(epoch) / total_epoch / xargs.warmup_ratio)
extra_info = {"class_num": class_num, "xshape": xshape, "epochs": xargs.overwite_epochs}
config = load_config(xargs.config_path, extra_info, logger)
search_loader, train_loader, valid_loader = get_nas_search_loaders(
train_data,
valid_data,
xargs.dataset,
"configs/nas-benchmark/",
(config.batch_size, config.test_batch_size),
xargs.workers,
)
logger.log(
"||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
xargs.dataset, len(search_loader), len(valid_loader), config.batch_size
)
)
logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
logger.log('\n[Search the {:}-th epoch] {:}, LR={:}, controller-warmup={:}, enable_controller={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()), network.warmup_ratio, enable_controller))
search_space = get_search_spaces(xargs.search_space, "nats-bench")
if xargs.algo == 'mask_gumbel' or xargs.algo == 'tas':
network.set_tau(xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (total_epoch-1))
logger.log('[RESET tau as : {:}]'.format(network.tau))
search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \
= search_func(search_loader, network, criterion, w_scheduler,
w_optimizer, a_optimizer, enable_controller, xargs.algo, epoch_str, xargs.print_freq, logger)
search_time.update(time.time() - start_time)
logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum))
logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5))
model_config = dict2config(
dict(
name="generic",
super_type="search-shape",
candidate_Cs=search_space["candidates"],
max_num_Cs=search_space["numbers"],
num_classes=class_num,
genotype=args.genotype,
affine=bool(xargs.affine),
track_running_stats=bool(xargs.track_running_stats),
),
None,
)
logger.log("search space : {:}".format(search_space))
logger.log("model config : {:}".format(model_config))
search_model = get_cell_based_tiny_net(model_config)
search_model.set_algo(xargs.algo)
logger.log("{:}".format(search_model))
genotype = network.genotype
logger.log('[{:}] - [get_best_arch] : {:}'.format(epoch_str, genotype))
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion, logger)
logger.log('[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype))
valid_accuracies[epoch] = valid_a_top1
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.weights, config)
a_optimizer = torch.optim.Adam(
search_model.alphas,
lr=xargs.arch_learning_rate,
betas=(0.5, 0.999),
weight_decay=xargs.arch_weight_decay,
eps=xargs.arch_eps,
)
logger.log("w-optimizer : {:}".format(w_optimizer))
logger.log("a-optimizer : {:}".format(a_optimizer))
logger.log("w-scheduler : {:}".format(w_scheduler))
logger.log("criterion : {:}".format(criterion))
params = count_parameters_in_MB(search_model)
logger.log("The parameters of the search model = {:.2f} MB".format(params))
logger.log("search-space : {:}".format(search_space))
if bool(xargs.use_api):
api = create(None, "size", fast_mode=True, verbose=False)
else:
api = None
logger.log("{:} create API = {:} done".format(time_string(), api))
genotypes[epoch] = genotype
logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch]))
# save checkpoint
save_path = save_checkpoint({'epoch' : epoch + 1,
'args' : deepcopy(xargs),
'search_model': search_model.state_dict(),
'w_optimizer' : w_optimizer.state_dict(),
'a_optimizer' : a_optimizer.state_dict(),
'w_scheduler' : w_scheduler.state_dict(),
'genotypes' : genotypes,
'valid_accuracies' : valid_accuracies},
model_base_path, logger)
last_info = save_checkpoint({
'epoch': epoch + 1,
'args' : deepcopy(args),
'last_checkpoint': save_path,
}, logger.path('info'), logger)
with torch.no_grad():
logger.log('{:}'.format(search_model.show_alphas()))
if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[epoch], '90')))
# measure elapsed time
epoch_time.update(time.time() - start_time)
last_info, model_base_path, model_best_path = logger.path("info"), logger.path("model"), logger.path("best")
network, criterion = search_model.cuda(), criterion.cuda() # use a single GPU
last_info, model_base_path, model_best_path = logger.path("info"), logger.path("model"), logger.path("best")
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
last_info = torch.load(last_info)
start_epoch = last_info["epoch"]
checkpoint = torch.load(last_info["last_checkpoint"])
genotypes = checkpoint["genotypes"]
valid_accuracies = checkpoint["valid_accuracies"]
search_model.load_state_dict(checkpoint["search_model"])
w_scheduler.load_state_dict(checkpoint["w_scheduler"])
w_optimizer.load_state_dict(checkpoint["w_optimizer"])
a_optimizer.load_state_dict(checkpoint["a_optimizer"])
logger.log(
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)
)
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes = 0, {"best": -1}, {-1: network.random}
# start training
start_time, search_time, epoch_time, total_epoch = (
time.time(),
AverageMeter(),
AverageMeter(),
config.epochs + config.warmup,
)
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = "Time Left: {:}".format(convert_secs2time(epoch_time.val * (total_epoch - epoch), True))
epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch)
if xargs.warmup_ratio is None or xargs.warmup_ratio <= float(epoch) / total_epoch:
enable_controller = True
network.set_warmup_ratio(None)
else:
enable_controller = False
network.set_warmup_ratio(1.0 - float(epoch) / total_epoch / xargs.warmup_ratio)
logger.log(
"\n[Search the {:}-th epoch] {:}, LR={:}, controller-warmup={:}, enable_controller={:}".format(
epoch_str, need_time, min(w_scheduler.get_lr()), network.warmup_ratio, enable_controller
)
)
if xargs.algo == "mask_gumbel" or xargs.algo == "tas":
network.set_tau(xargs.tau_max - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1))
logger.log("[RESET tau as : {:}]".format(network.tau))
search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 = search_func(
search_loader,
network,
criterion,
w_scheduler,
w_optimizer,
a_optimizer,
enable_controller,
xargs.algo,
epoch_str,
xargs.print_freq,
logger,
)
search_time.update(time.time() - start_time)
logger.log(
"[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s".format(
epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum
)
)
logger.log(
"[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format(
epoch_str, search_a_loss, search_a_top1, search_a_top5
)
)
genotype = network.genotype
logger.log("[{:}] - [get_best_arch] : {:}".format(epoch_str, genotype))
valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(valid_loader, network, criterion, logger)
logger.log(
"[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}".format(
epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype
)
)
valid_accuracies[epoch] = valid_a_top1
genotypes[epoch] = genotype
logger.log("<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]))
# save checkpoint
save_path = save_checkpoint(
{
"epoch": epoch + 1,
"args": deepcopy(xargs),
"search_model": search_model.state_dict(),
"w_optimizer": w_optimizer.state_dict(),
"a_optimizer": a_optimizer.state_dict(),
"w_scheduler": w_scheduler.state_dict(),
"genotypes": genotypes,
"valid_accuracies": valid_accuracies,
},
model_base_path,
logger,
)
last_info = save_checkpoint(
{
"epoch": epoch + 1,
"args": deepcopy(args),
"last_checkpoint": save_path,
},
logger.path("info"),
logger,
)
with torch.no_grad():
logger.log("{:}".format(search_model.show_alphas()))
if api is not None:
logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "90")))
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
# the final post procedure : count the time
start_time = time.time()
genotype = network.genotype
search_time.update(time.time() - start_time)
# the final post procedure : count the time
start_time = time.time()
genotype = network.genotype
search_time.update(time.time() - start_time)
valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(valid_loader, network, criterion, logger)
logger.log("Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.".format(genotype, valid_a_top1))
valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(valid_loader, network, criterion, logger)
logger.log('Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.'.format(genotype, valid_a_top1))
logger.log("\n" + "-" * 100)
# check the performance from the architecture dataset
logger.log(
"[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.".format(
xargs.algo, total_epoch, search_time.sum, genotype
)
)
if api is not None:
logger.log("{:}".format(api.query_by_arch(genotype, "90")))
logger.close()
logger.log('\n' + '-'*100)
# check the performance from the architecture dataset
logger.log('[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(xargs.algo, total_epoch, search_time.sum, genotype))
if api is not None: logger.log('{:}'.format(api.query_by_arch(genotype, '90') ))
logger.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser("Weight sharing NAS methods to search for cells.")
parser.add_argument('--data_path' , type=str, help='Path to dataset')
parser.add_argument('--dataset' , type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
parser.add_argument('--search_space', type=str, default='sss', choices=['sss'], help='The search space name.')
parser.add_argument('--algo' , type=str, choices=['tas', 'mask_gumbel', 'mask_rl'], help='The search space name.')
parser.add_argument('--genotype' , type=str, default='|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|', help='The genotype.')
parser.add_argument('--use_api' , type=int, default=1, choices=[0,1], help='Whether use API or not (which will cost much memory).')
# FOR GDAS
parser.add_argument('--tau_min', type=float, default=0.1, help='The minimum tau for Gumbel Softmax.')
parser.add_argument('--tau_max', type=float, default=10, help='The maximum tau for Gumbel Softmax.')
# FOR ALL
parser.add_argument('--warmup_ratio', type=float, help='The warmup ratio, if None, not use warmup.')
#
parser.add_argument('--track_running_stats',type=int, default=0, choices=[0,1],help='Whether use track_running_stats or not in the BN layer.')
parser.add_argument('--affine' , type=int, default=0, choices=[0,1],help='Whether use affine=True or False in the BN layer.')
parser.add_argument('--config_path' , type=str, default='./configs/nas-benchmark/algos/weight-sharing.config', help='The path of configuration.')
parser.add_argument('--overwite_epochs', type=int, help='The number of epochs to overwrite that value in config files.')
# architecture leraning rate
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
parser.add_argument('--arch_weight_decay' , type=float, default=1e-3, help='weight decay for arch encoding')
parser.add_argument('--arch_eps' , type=float, default=1e-8, help='weight decay for arch encoding')
# log
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
parser.add_argument('--print_freq', type=int, default=200, help='print frequency (default: 200)')
parser.add_argument('--rand_seed', type=int, help='manual seed')
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
dirname = '{:}-affine{:}_BN{:}-AWD{:}-WARM{:}'.format(args.algo, args.affine, args.track_running_stats, args.arch_weight_decay, args.warmup_ratio)
if args.overwite_epochs is not None:
dirname = dirname + '-E{:}'.format(args.overwite_epochs)
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, dirname)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Weight sharing NAS methods to search for cells.")
parser.add_argument("--data_path", type=str, help="Path to dataset")
parser.add_argument(
"--dataset",
type=str,
choices=["cifar10", "cifar100", "ImageNet16-120"],
help="Choose between Cifar10/100 and ImageNet-16.",
)
parser.add_argument("--search_space", type=str, default="sss", choices=["sss"], help="The search space name.")
parser.add_argument("--algo", type=str, choices=["tas", "mask_gumbel", "mask_rl"], help="The search space name.")
parser.add_argument(
"--genotype",
type=str,
default="|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|",
help="The genotype.",
)
parser.add_argument(
"--use_api", type=int, default=1, choices=[0, 1], help="Whether use API or not (which will cost much memory)."
)
# FOR GDAS
parser.add_argument("--tau_min", type=float, default=0.1, help="The minimum tau for Gumbel Softmax.")
parser.add_argument("--tau_max", type=float, default=10, help="The maximum tau for Gumbel Softmax.")
# FOR ALL
parser.add_argument("--warmup_ratio", type=float, help="The warmup ratio, if None, not use warmup.")
#
parser.add_argument(
"--track_running_stats",
type=int,
default=0,
choices=[0, 1],
help="Whether use track_running_stats or not in the BN layer.",
)
parser.add_argument(
"--affine", type=int, default=0, choices=[0, 1], help="Whether use affine=True or False in the BN layer."
)
parser.add_argument(
"--config_path",
type=str,
default="./configs/nas-benchmark/algos/weight-sharing.config",
help="The path of configuration.",
)
parser.add_argument(
"--overwite_epochs", type=int, help="The number of epochs to overwrite that value in config files."
)
# architecture leraning rate
parser.add_argument("--arch_learning_rate", type=float, default=3e-4, help="learning rate for arch encoding")
parser.add_argument("--arch_weight_decay", type=float, default=1e-3, help="weight decay for arch encoding")
parser.add_argument("--arch_eps", type=float, default=1e-8, help="weight decay for arch encoding")
# log
parser.add_argument("--workers", type=int, default=2, help="number of data loading workers (default: 2)")
parser.add_argument("--save_dir", type=str, default="./output/search", help="Folder to save checkpoints and log.")
parser.add_argument("--print_freq", type=int, default=200, help="print frequency (default: 200)")
parser.add_argument("--rand_seed", type=int, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
dirname = "{:}-affine{:}_BN{:}-AWD{:}-WARM{:}".format(
args.algo, args.affine, args.track_running_stats, args.arch_weight_decay, args.warmup_ratio
)
if args.overwite_epochs is not None:
dirname = dirname + "-E{:}".format(args.overwite_epochs)
args.save_dir = os.path.join("{:}-{:}".format(args.save_dir, args.search_space), args.dataset, dirname)
main(args)
main(args)