Reformulate via black

This commit is contained in:
D-X-Y
2021-03-17 09:25:58 +00:00
parent a9093e41e1
commit f98edea22a
59 changed files with 12289 additions and 8918 deletions

View File

@@ -4,313 +4,492 @@
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
###############################################################
import os, sys, time, torch, random, argparse
from PIL import ImageFile
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import load_config
from procedures import save_checkpoint, copy_checkpoint
from procedures import get_machine_info
from datasets import get_datasets
from log_utils import Logger, AverageMeter, time_string, convert_secs2time
from models import CellStructure, CellArchitectures, get_search_spaces
from functions import evaluate_for_seed
from procedures import save_checkpoint, copy_checkpoint
from procedures import get_machine_info
from datasets import get_datasets
from log_utils import Logger, AverageMeter, time_string, convert_secs2time
from models import CellStructure, CellArchitectures, get_search_spaces
from functions import evaluate_for_seed
def evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger):
machine_info, arch_config = get_machine_info(), deepcopy(arch_config)
all_infos = {'info': machine_info}
all_dataset_keys = []
# look all the datasets
for dataset, xpath, split in zip(datasets, xpaths, splits):
# train valid data
train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1)
# load the configuration
if dataset == 'cifar10' or dataset == 'cifar100':
if use_less: config_path = 'configs/nas-benchmark/LESS.config'
else : config_path = 'configs/nas-benchmark/CIFAR.config'
split_info = load_config('configs/nas-benchmark/cifar-split.txt', None, None)
elif dataset.startswith('ImageNet16'):
if use_less: config_path = 'configs/nas-benchmark/LESS.config'
else : config_path = 'configs/nas-benchmark/ImageNet-16.config'
split_info = load_config('configs/nas-benchmark/{:}-split.txt'.format(dataset), None, None)
machine_info, arch_config = get_machine_info(), deepcopy(arch_config)
all_infos = {"info": machine_info}
all_dataset_keys = []
# look all the datasets
for dataset, xpath, split in zip(datasets, xpaths, splits):
# train valid data
train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1)
# load the configuration
if dataset == "cifar10" or dataset == "cifar100":
if use_less:
config_path = "configs/nas-benchmark/LESS.config"
else:
config_path = "configs/nas-benchmark/CIFAR.config"
split_info = load_config("configs/nas-benchmark/cifar-split.txt", None, None)
elif dataset.startswith("ImageNet16"):
if use_less:
config_path = "configs/nas-benchmark/LESS.config"
else:
config_path = "configs/nas-benchmark/ImageNet-16.config"
split_info = load_config("configs/nas-benchmark/{:}-split.txt".format(dataset), None, None)
else:
raise ValueError("invalid dataset : {:}".format(dataset))
config = load_config(config_path, {"class_num": class_num, "xshape": xshape}, logger)
# check whether use splited validation set
if bool(split):
assert dataset == "cifar10"
ValLoaders = {
"ori-test": torch.utils.data.DataLoader(
valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True
)
}
assert len(train_data) == len(split_info.train) + len(
split_info.valid
), "invalid length : {:} vs {:} + {:}".format(len(train_data), len(split_info.train), len(split_info.valid))
train_data_v2 = deepcopy(train_data)
train_data_v2.transform = valid_data.transform
valid_data = train_data_v2
# data loader
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train),
num_workers=workers,
pin_memory=True,
)
valid_loader = torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid),
num_workers=workers,
pin_memory=True,
)
ValLoaders["x-valid"] = valid_loader
else:
# data loader
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=config.batch_size, shuffle=True, num_workers=workers, pin_memory=True
)
valid_loader = torch.utils.data.DataLoader(
valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True
)
if dataset == "cifar10":
ValLoaders = {"ori-test": valid_loader}
elif dataset == "cifar100":
cifar100_splits = load_config("configs/nas-benchmark/cifar100-test-split.txt", None, None)
ValLoaders = {
"ori-test": valid_loader,
"x-valid": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid),
num_workers=workers,
pin_memory=True,
),
"x-test": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest),
num_workers=workers,
pin_memory=True,
),
}
elif dataset == "ImageNet16-120":
imagenet16_splits = load_config("configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None)
ValLoaders = {
"ori-test": valid_loader,
"x-valid": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid),
num_workers=workers,
pin_memory=True,
),
"x-test": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest),
num_workers=workers,
pin_memory=True,
),
}
else:
raise ValueError("invalid dataset : {:}".format(dataset))
dataset_key = "{:}".format(dataset)
if bool(split):
dataset_key = dataset_key + "-valid"
logger.log(
"Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size
)
)
logger.log("Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config))
for key, value in ValLoaders.items():
logger.log("Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value)))
results = evaluate_for_seed(arch_config, config, arch, train_loader, ValLoaders, seed, logger)
all_infos[dataset_key] = results
all_dataset_keys.append(dataset_key)
all_infos["all_dataset_keys"] = all_dataset_keys
return all_infos
def main(
save_dir, workers, datasets, xpaths, splits, use_less, srange, arch_index, seeds, cover_mode, meta_info, arch_config
):
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
# torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
torch.set_num_threads(workers)
assert len(srange) == 2 and 0 <= srange[0] <= srange[1], "invalid srange : {:}".format(srange)
if use_less:
sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}-LESS".format(
srange[0], srange[1], arch_config["channel"], arch_config["num_cells"]
)
else:
raise ValueError('invalid dataset : {:}'.format(dataset))
config = load_config(config_path, \
{'class_num': class_num,
'xshape' : xshape}, \
logger)
# check whether use splited validation set
if bool(split):
assert dataset == 'cifar10'
ValLoaders = {'ori-test': torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)}
assert len(train_data) == len(split_info.train) + len(split_info.valid), 'invalid length : {:} vs {:} + {:}'.format(len(train_data), len(split_info.train), len(split_info.valid))
train_data_v2 = deepcopy(train_data)
train_data_v2.transform = valid_data.transform
valid_data = train_data_v2
# data loader
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True)
ValLoaders['x-valid'] = valid_loader
sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}".format(
srange[0], srange[1], arch_config["channel"], arch_config["num_cells"]
)
logger = Logger(str(sub_dir), 0, False)
all_archs = meta_info["archs"]
assert srange[1] < meta_info["total"], "invalid range : {:}-{:} vs. {:}".format(
srange[0], srange[1], meta_info["total"]
)
assert arch_index == -1 or srange[0] <= arch_index <= srange[1], "invalid range : {:} vs. {:} vs. {:}".format(
srange[0], arch_index, srange[1]
)
if arch_index == -1:
to_evaluate_indexes = list(range(srange[0], srange[1] + 1))
else:
# data loader
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=True , num_workers=workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)
if dataset == 'cifar10':
ValLoaders = {'ori-test': valid_loader}
elif dataset == 'cifar100':
cifar100_splits = load_config('configs/nas-benchmark/cifar100-test-split.txt', None, None)
ValLoaders = {'ori-test': valid_loader,
'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True),
'x-test' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest ), num_workers=workers, pin_memory=True)
}
elif dataset == 'ImageNet16-120':
imagenet16_splits = load_config('configs/nas-benchmark/imagenet-16-120-test-split.txt', None, None)
ValLoaders = {'ori-test': valid_loader,
'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), num_workers=workers, pin_memory=True),
'x-test' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest ), num_workers=workers, pin_memory=True)
}
else:
raise ValueError('invalid dataset : {:}'.format(dataset))
to_evaluate_indexes = [arch_index]
logger.log("xargs : seeds = {:}".format(seeds))
logger.log("xargs : arch_index = {:}".format(arch_index))
logger.log("xargs : cover_mode = {:}".format(cover_mode))
logger.log("-" * 100)
dataset_key = '{:}'.format(dataset)
if bool(split): dataset_key = dataset_key + '-valid'
logger.log('Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size))
logger.log('Evaluate ||||||| {:10s} ||||||| Config={:}'.format(dataset_key, config))
for key, value in ValLoaders.items():
logger.log('Evaluate ---->>>> {:10s} with {:} batchs'.format(key, len(value)))
results = evaluate_for_seed(arch_config, config, arch, train_loader, ValLoaders, seed, logger)
all_infos[dataset_key] = results
all_dataset_keys.append( dataset_key )
all_infos['all_dataset_keys'] = all_dataset_keys
return all_infos
logger.log(
"Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}".format(
srange[0], arch_index, srange[1], meta_info["total"], cover_mode
)
)
for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)):
logger.log(
"--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}".format(
i, len(datasets), dataset, xpath, split
)
)
logger.log("--->>> architecture config : {:}".format(arch_config))
start_time, epoch_time = time.time(), AverageMeter()
for i, index in enumerate(to_evaluate_indexes):
arch = all_archs[index]
logger.log(
"\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}".format(
"-" * 15, i, len(to_evaluate_indexes), index, meta_info["total"], seeds, "-" * 15
)
)
# logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15))
logger.log("{:} {:} {:}".format("-" * 15, arch, "-" * 15))
def main(save_dir, workers, datasets, xpaths, splits, use_less, srange, arch_index, seeds, cover_mode, meta_info, arch_config):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
#torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
torch.set_num_threads( workers )
# test this arch on different datasets with different seeds
has_continue = False
for seed in seeds:
to_save_name = sub_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed)
if to_save_name.exists():
if cover_mode:
logger.log("Find existing file : {:}, remove it before evaluation".format(to_save_name))
os.remove(str(to_save_name))
else:
logger.log("Find existing file : {:}, skip this evaluation".format(to_save_name))
has_continue = True
continue
results = evaluate_all_datasets(
CellStructure.str2structure(arch),
datasets,
xpaths,
splits,
use_less,
seed,
arch_config,
workers,
logger,
)
torch.save(results, to_save_name)
logger.log(
"{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}".format(
"-" * 15, i, len(to_evaluate_indexes), index, meta_info["total"], seed, to_save_name
)
)
# measure elapsed time
if not has_continue:
epoch_time.update(time.time() - start_time)
start_time = time.time()
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True)
)
logger.log("This arch costs : {:}".format(convert_secs2time(epoch_time.val, True)))
logger.log("{:}".format("*" * 100))
logger.log(
"{:} {:74s} {:}".format(
"*" * 10,
"{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}".format(
i, len(to_evaluate_indexes), index, meta_info["total"], need_time
),
"*" * 10,
)
)
logger.log("{:}".format("*" * 100))
assert len(srange) == 2 and 0 <= srange[0] <= srange[1], 'invalid srange : {:}'.format(srange)
if use_less:
sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}-LESS'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells'])
else:
sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells'])
logger = Logger(str(sub_dir), 0, False)
all_archs = meta_info['archs']
assert srange[1] < meta_info['total'], 'invalid range : {:}-{:} vs. {:}'.format(srange[0], srange[1], meta_info['total'])
assert arch_index == -1 or srange[0] <= arch_index <= srange[1], 'invalid range : {:} vs. {:} vs. {:}'.format(srange[0], arch_index, srange[1])
if arch_index == -1:
to_evaluate_indexes = list(range(srange[0], srange[1]+1))
else:
to_evaluate_indexes = [arch_index]
logger.log('xargs : seeds = {:}'.format(seeds))
logger.log('xargs : arch_index = {:}'.format(arch_index))
logger.log('xargs : cover_mode = {:}'.format(cover_mode))
logger.log('-'*100)
logger.log('Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}'.format(srange[0], arch_index, srange[1], meta_info['total'], cover_mode))
for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)):
logger.log('--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}'.format(i, len(datasets), dataset, xpath, split))
logger.log('--->>> architecture config : {:}'.format(arch_config))
start_time, epoch_time = time.time(), AverageMeter()
for i, index in enumerate(to_evaluate_indexes):
arch = all_archs[index]
logger.log('\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seeds, '-'*15))
#logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15))
logger.log('{:} {:} {:}'.format('-'*15, arch, '-'*15))
# test this arch on different datasets with different seeds
has_continue = False
for seed in seeds:
to_save_name = sub_dir / 'arch-{:06d}-seed-{:04d}.pth'.format(index, seed)
if to_save_name.exists():
if cover_mode:
logger.log('Find existing file : {:}, remove it before evaluation'.format(to_save_name))
os.remove(str(to_save_name))
else :
logger.log('Find existing file : {:}, skip this evaluation'.format(to_save_name))
has_continue = True
continue
results = evaluate_all_datasets(CellStructure.str2structure(arch), \
datasets, xpaths, splits, use_less, seed, \
arch_config, workers, logger)
torch.save(results, to_save_name)
logger.log('{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seed, to_save_name))
# measure elapsed time
if not has_continue: epoch_time.update(time.time() - start_time)
start_time = time.time()
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes)-i-1), True) )
logger.log('This arch costs : {:}'.format( convert_secs2time(epoch_time.val, True) ))
logger.log('{:}'.format('*'*100))
logger.log('{:} {:74s} {:}'.format('*'*10, '{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}'.format(i, len(to_evaluate_indexes), index, meta_info['total'], need_time), '*'*10))
logger.log('{:}'.format('*'*100))
logger.close()
logger.close()
def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
#torch.backends.cudnn.benchmark = True
torch.set_num_threads( workers )
save_dir = Path(save_dir) / 'specifics' / '{:}-{:}-{:}-{:}'.format('LESS' if use_less else 'FULL', model_str, arch_config['channel'], arch_config['num_cells'])
logger = Logger(str(save_dir), 0, False)
if model_str in CellArchitectures:
arch = CellArchitectures[model_str]
logger.log('The model string is found in pre-defined architecture dict : {:}'.format(model_str))
else:
try:
arch = CellStructure.str2structure(model_str)
except:
raise ValueError('Invalid model string : {:}. It can not be found or parsed.'.format(model_str))
assert arch.check_valid_op(get_search_spaces('cell', 'full')), '{:} has the invalid op.'.format(arch)
logger.log('Start train-evaluate {:}'.format(arch.tostr()))
logger.log('arch_config : {:}'.format(arch_config))
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = True
torch.set_num_threads(workers)
start_time, seed_time = time.time(), AverageMeter()
for _is, seed in enumerate(seeds):
logger.log('\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------'.format(_is, len(seeds), seed))
to_save_name = save_dir / 'seed-{:04d}.pth'.format(seed)
if to_save_name.exists():
logger.log('Find the existing file {:}, directly load!'.format(to_save_name))
checkpoint = torch.load(to_save_name)
save_dir = (
Path(save_dir)
/ "specifics"
/ "{:}-{:}-{:}-{:}".format(
"LESS" if use_less else "FULL", model_str, arch_config["channel"], arch_config["num_cells"]
)
)
logger = Logger(str(save_dir), 0, False)
if model_str in CellArchitectures:
arch = CellArchitectures[model_str]
logger.log("The model string is found in pre-defined architecture dict : {:}".format(model_str))
else:
logger.log('Does not find the existing file {:}, train and evaluate!'.format(to_save_name))
checkpoint = evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger)
torch.save(checkpoint, to_save_name)
# log information
logger.log('{:}'.format(checkpoint['info']))
all_dataset_keys = checkpoint['all_dataset_keys']
for dataset_key in all_dataset_keys:
logger.log('\n{:} dataset : {:} {:}'.format('-'*15, dataset_key, '-'*15))
dataset_info = checkpoint[dataset_key]
#logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] ))
logger.log('Flops = {:} MB, Params = {:} MB'.format(dataset_info['flop'], dataset_info['param']))
logger.log('config : {:}'.format(dataset_info['config']))
logger.log('Training State (finish) = {:}'.format(dataset_info['finish-train']))
last_epoch = dataset_info['total_epoch'] - 1
train_acc1es, train_acc5es = dataset_info['train_acc1es'], dataset_info['train_acc5es']
valid_acc1es, valid_acc5es = dataset_info['valid_acc1es'], dataset_info['valid_acc5es']
logger.log('Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%'.format(train_acc1es[last_epoch], train_acc5es[last_epoch], 100-train_acc1es[last_epoch], valid_acc1es[last_epoch], valid_acc5es[last_epoch], 100-valid_acc1es[last_epoch]))
# measure elapsed time
seed_time.update(time.time() - start_time)
start_time = time.time()
need_time = 'Time Left: {:}'.format( convert_secs2time(seed_time.avg * (len(seeds)-_is-1), True) )
logger.log('\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}'.format(_is, len(seeds), seed, need_time))
logger.close()
try:
arch = CellStructure.str2structure(model_str)
except:
raise ValueError("Invalid model string : {:}. It can not be found or parsed.".format(model_str))
assert arch.check_valid_op(get_search_spaces("cell", "full")), "{:} has the invalid op.".format(arch)
logger.log("Start train-evaluate {:}".format(arch.tostr()))
logger.log("arch_config : {:}".format(arch_config))
start_time, seed_time = time.time(), AverageMeter()
for _is, seed in enumerate(seeds):
logger.log(
"\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------".format(
_is, len(seeds), seed
)
)
to_save_name = save_dir / "seed-{:04d}.pth".format(seed)
if to_save_name.exists():
logger.log("Find the existing file {:}, directly load!".format(to_save_name))
checkpoint = torch.load(to_save_name)
else:
logger.log("Does not find the existing file {:}, train and evaluate!".format(to_save_name))
checkpoint = evaluate_all_datasets(
arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger
)
torch.save(checkpoint, to_save_name)
# log information
logger.log("{:}".format(checkpoint["info"]))
all_dataset_keys = checkpoint["all_dataset_keys"]
for dataset_key in all_dataset_keys:
logger.log("\n{:} dataset : {:} {:}".format("-" * 15, dataset_key, "-" * 15))
dataset_info = checkpoint[dataset_key]
# logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] ))
logger.log("Flops = {:} MB, Params = {:} MB".format(dataset_info["flop"], dataset_info["param"]))
logger.log("config : {:}".format(dataset_info["config"]))
logger.log("Training State (finish) = {:}".format(dataset_info["finish-train"]))
last_epoch = dataset_info["total_epoch"] - 1
train_acc1es, train_acc5es = dataset_info["train_acc1es"], dataset_info["train_acc5es"]
valid_acc1es, valid_acc5es = dataset_info["valid_acc1es"], dataset_info["valid_acc5es"]
logger.log(
"Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%".format(
train_acc1es[last_epoch],
train_acc5es[last_epoch],
100 - train_acc1es[last_epoch],
valid_acc1es[last_epoch],
valid_acc5es[last_epoch],
100 - valid_acc1es[last_epoch],
)
)
# measure elapsed time
seed_time.update(time.time() - start_time)
start_time = time.time()
need_time = "Time Left: {:}".format(convert_secs2time(seed_time.avg * (len(seeds) - _is - 1), True))
logger.log(
"\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}".format(
_is, len(seeds), seed, need_time
)
)
logger.close()
def generate_meta_info(save_dir, max_node, divide=40):
aa_nas_bench_ss = get_search_spaces('cell', 'nas-bench-201')
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2)))
aa_nas_bench_ss = get_search_spaces("cell", "nas-bench-201")
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
print("There are {:} archs vs {:}.".format(len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2)))
random.seed( 88 ) # please do not change this line for reproducibility
random.shuffle( archs )
# to test fixed-random shuffle
#print ('arch [0] : {:}\n---->>>> {:}'.format( archs[0], archs[0].tostr() ))
#print ('arch [9] : {:}\n---->>>> {:}'.format( archs[9], archs[9].tostr() ))
assert archs[0 ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0])
assert archs[9 ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9])
assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123])
total_arch = len(archs)
num = 50000
indexes_5W = list(range(num))
random.seed( 1021 )
random.shuffle( indexes_5W )
train_split = sorted( list(set(indexes_5W[:num//2])) )
valid_split = sorted( list(set(indexes_5W[num//2:])) )
assert len(train_split) + len(valid_split) == num
assert train_split[0] == 0 and train_split[10] == 26 and train_split[111] == 203 and valid_split[0] == 1 and valid_split[10] == 18 and valid_split[111] == 242, '{:} {:} {:} - {:} {:} {:}'.format(train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111])
splits = {num: {'train': train_split, 'valid': valid_split} }
random.seed(88) # please do not change this line for reproducibility
random.shuffle(archs)
# to test fixed-random shuffle
# print ('arch [0] : {:}\n---->>>> {:}'.format( archs[0], archs[0].tostr() ))
# print ('arch [9] : {:}\n---->>>> {:}'.format( archs[9], archs[9].tostr() ))
assert (
archs[0].tostr()
== "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|"
), "please check the 0-th architecture : {:}".format(archs[0])
assert (
archs[9].tostr() == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|"
), "please check the 9-th architecture : {:}".format(archs[9])
assert (
archs[123].tostr() == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|"
), "please check the 123-th architecture : {:}".format(archs[123])
total_arch = len(archs)
info = {'archs' : [x.tostr() for x in archs],
'total' : total_arch,
'max_node' : max_node,
'splits': splits}
num = 50000
indexes_5W = list(range(num))
random.seed(1021)
random.shuffle(indexes_5W)
train_split = sorted(list(set(indexes_5W[: num // 2])))
valid_split = sorted(list(set(indexes_5W[num // 2 :])))
assert len(train_split) + len(valid_split) == num
assert (
train_split[0] == 0
and train_split[10] == 26
and train_split[111] == 203
and valid_split[0] == 1
and valid_split[10] == 18
and valid_split[111] == 242
), "{:} {:} {:} - {:} {:} {:}".format(
train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111]
)
splits = {num: {"train": train_split, "valid": valid_split}}
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
save_name = save_dir / 'meta-node-{:}.pth'.format(max_node)
assert not save_name.exists(), '{:} already exist'.format(save_name)
torch.save(info, save_name)
print ('save the meta file into {:}'.format(save_name))
info = {"archs": [x.tostr() for x in archs], "total": total_arch, "max_node": max_node, "splits": splits}
script_name_full = save_dir / 'BENCH-201-N{:}.opt-full.script'.format(max_node)
script_name_less = save_dir / 'BENCH-201-N{:}.opt-less.script'.format(max_node)
full_file = open(str(script_name_full), 'w')
less_file = open(str(script_name_less), 'w')
gaps = total_arch // divide
for start in range(0, total_arch, gaps):
xend = min(start+gaps, total_arch)
full_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1))
less_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1))
print ('save the training script into {:} and {:}'.format(script_name_full, script_name_less))
full_file.close()
less_file.close()
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
save_name = save_dir / "meta-node-{:}.pth".format(max_node)
assert not save_name.exists(), "{:} already exist".format(save_name)
torch.save(info, save_name)
print("save the meta file into {:}".format(save_name))
script_name = save_dir / 'meta-node-{:}.cal-script.txt'.format(max_node)
macro = 'OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0'
with open(str(script_name), 'w') as cfile:
script_name_full = save_dir / "BENCH-201-N{:}.opt-full.script".format(max_node)
script_name_less = save_dir / "BENCH-201-N{:}.opt-less.script".format(max_node)
full_file = open(str(script_name_full), "w")
less_file = open(str(script_name_less), "w")
gaps = total_arch // divide
for start in range(0, total_arch, gaps):
xend = min(start+gaps, total_arch)
cfile.write('{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1))
print ('save the post-processing script into {:}'.format(script_name))
xend = min(start + gaps, total_arch)
full_file.write(
"bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 '777 888 999'\n".format(
start, xend - 1
)
)
less_file.write(
"bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 '777 888 999'\n".format(
start, xend - 1
)
)
print("save the training script into {:} and {:}".format(script_name_full, script_name_less))
full_file.close()
less_file.close()
script_name = save_dir / "meta-node-{:}.cal-script.txt".format(max_node)
macro = "OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0"
with open(str(script_name), "w") as cfile:
for start in range(0, total_arch, gaps):
xend = min(start + gaps, total_arch)
cfile.write(
"{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n".format(
macro, start, xend - 1
)
)
print("save the post-processing script into {:}".format(script_name))
if __name__ == '__main__':
#mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()]
#parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--mode' , type=str, required=True, help='The script mode.')
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
parser.add_argument('--max_node', type=int, help='The maximum node in a cell.')
# use for train the model
parser.add_argument('--workers', type=int, default=8, help='number of data loading workers (default: 2)')
parser.add_argument('--srange' , type=int, nargs='+', help='The range of models to be evaluated')
parser.add_argument('--arch_index', type=int, default=-1, help='The architecture index to be evaluated (cover mode).')
parser.add_argument('--datasets', type=str, nargs='+', help='The applied datasets.')
parser.add_argument('--xpaths', type=str, nargs='+', help='The root path for this dataset.')
parser.add_argument('--splits', type=int, nargs='+', help='The root path for this dataset.')
parser.add_argument('--use_less', type=int, default=0, choices=[0,1], help='Using the less-training-epoch config.')
parser.add_argument('--seeds' , type=int, nargs='+', help='The range of models to be evaluated')
parser.add_argument('--channel', type=int, help='The number of channels.')
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
args = parser.parse_args()
if __name__ == "__main__":
# mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()]
# parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = argparse.ArgumentParser(
description="NAS-Bench-201", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--mode", type=str, required=True, help="The script mode.")
parser.add_argument("--save_dir", type=str, help="Folder to save checkpoints and log.")
parser.add_argument("--max_node", type=int, help="The maximum node in a cell.")
# use for train the model
parser.add_argument("--workers", type=int, default=8, help="number of data loading workers (default: 2)")
parser.add_argument("--srange", type=int, nargs="+", help="The range of models to be evaluated")
parser.add_argument(
"--arch_index", type=int, default=-1, help="The architecture index to be evaluated (cover mode)."
)
parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.")
parser.add_argument("--xpaths", type=str, nargs="+", help="The root path for this dataset.")
parser.add_argument("--splits", type=int, nargs="+", help="The root path for this dataset.")
parser.add_argument("--use_less", type=int, default=0, choices=[0, 1], help="Using the less-training-epoch config.")
parser.add_argument("--seeds", type=int, nargs="+", help="The range of models to be evaluated")
parser.add_argument("--channel", type=int, help="The number of channels.")
parser.add_argument("--num_cells", type=int, help="The number of cells in one stage.")
args = parser.parse_args()
assert args.mode in ['meta', 'new', 'cover'] or args.mode.startswith('specific-'), 'invalid mode : {:}'.format(args.mode)
assert args.mode in ["meta", "new", "cover"] or args.mode.startswith("specific-"), "invalid mode : {:}".format(
args.mode
)
if args.mode == 'meta':
generate_meta_info(args.save_dir, args.max_node)
elif args.mode.startswith('specific'):
assert len(args.mode.split('-')) == 2, 'invalid mode : {:}'.format(args.mode)
model_str = args.mode.split('-')[1]
train_single_model(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.use_less>0, \
tuple(args.seeds), model_str, {'channel': args.channel, 'num_cells': args.num_cells})
else:
meta_path = Path(args.save_dir) / 'meta-node-{:}.pth'.format(args.max_node)
assert meta_path.exists(), '{:} does not exist.'.format(meta_path)
meta_info = torch.load( meta_path )
# check whether args is ok
assert len(args.srange) == 2 and args.srange[0] <= args.srange[1], 'invalid length of srange args: {:}'.format(args.srange)
assert len(args.seeds) > 0, 'invalid length of seeds args: {:}'.format(args.seeds)
assert len(args.datasets) == len(args.xpaths) == len(args.splits), 'invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits))
assert args.workers > 0, 'invalid number of workers : {:}'.format(args.workers)
main(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.use_less>0, \
tuple(args.srange), args.arch_index, tuple(args.seeds), \
args.mode == 'cover', meta_info, \
{'channel': args.channel, 'num_cells': args.num_cells})
if args.mode == "meta":
generate_meta_info(args.save_dir, args.max_node)
elif args.mode.startswith("specific"):
assert len(args.mode.split("-")) == 2, "invalid mode : {:}".format(args.mode)
model_str = args.mode.split("-")[1]
train_single_model(
args.save_dir,
args.workers,
args.datasets,
args.xpaths,
args.splits,
args.use_less > 0,
tuple(args.seeds),
model_str,
{"channel": args.channel, "num_cells": args.num_cells},
)
else:
meta_path = Path(args.save_dir) / "meta-node-{:}.pth".format(args.max_node)
assert meta_path.exists(), "{:} does not exist.".format(meta_path)
meta_info = torch.load(meta_path)
# check whether args is ok
assert len(args.srange) == 2 and args.srange[0] <= args.srange[1], "invalid length of srange args: {:}".format(
args.srange
)
assert len(args.seeds) > 0, "invalid length of seeds args: {:}".format(args.seeds)
assert len(args.datasets) == len(args.xpaths) == len(args.splits), "invalid infos : {:} vs {:} vs {:}".format(
len(args.datasets), len(args.xpaths), len(args.splits)
)
assert args.workers > 0, "invalid number of workers : {:}".format(args.workers)
main(
args.save_dir,
args.workers,
args.datasets,
args.xpaths,
args.splits,
args.use_less > 0,
tuple(args.srange),
args.arch_index,
tuple(args.seeds),
args.mode == "cover",
meta_info,
{"channel": args.channel, "num_cells": args.num_cells},
)