update tf-GDAS

This commit is contained in:
D-X-Y
2020-01-18 00:07:35 +11:00
parent c2ff845d1b
commit f49f8c7451
3 changed files with 68 additions and 12 deletions

View File

@@ -11,7 +11,7 @@ OPS = {
'nor_conv_1x1': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 1, stride, affine),
'nor_conv_3x3': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 3, stride, affine),
'nor_conv_5x5': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 5, stride, affine),
'skip_connect': lambda C_in, C_out, stride, affine: Identity(C_in, C_out, stride)
'skip_connect': lambda C_in, C_out, stride, affine: Identity(C_in, C_out, stride) if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine)
}
NAS_BENCH_201 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
@@ -87,6 +87,36 @@ class ReLUConvBN(tf.keras.layers.Layer):
return x
class FactorizedReduce(tf.keras.layers.Layer):
def __init__(self, C_in, C_out, stride, affine):
assert output_filters % 2 == 0, ('Need even number of filters when using this factorized reduction.')
self.stride == stride
self.relu = tf.keras.activations.relu
if stride == 1:
self.layer = tf.keras.Sequential([
tf.keras.layers.Conv2D(C_out, 1, strides, padding='same', use_bias=False),
tf.keras.layers.BatchNormalization(center=affine, scale=affine)])
elif stride == 2:
stride_spec = [1, stride, stride, 1] # data_format == 'NHWC'
self.layer1 = tf.keras.layers.Conv2D(C_out//2, 1, strides, padding='same', use_bias=False)
self.layer2 = tf.keras.layers.Conv2D(C_out//2, 1, strides, padding='same', use_bias=False)
self.bn = tf.keras.layers.BatchNormalization(center=affine, scale=affine)
else:
raise ValueError('invalid stride={:}'.format(stride))
def call(self, inputs, training):
x = self.relu(inputs)
if self.stride == 1:
return self.layer(x, training)
else:
path1 = x
path2 = tf.pad(x, [[0, 0], [0, 1], [0, 1], [0, 0]])[:, 1:, 1:, :] # data_format == 'NHWC'
x1 = self.layer1(path1)
x2 = self.layer2(path2)
final_path = tf.concat(values=[x1, x2], axis=3)
return self.bn(final_path)
class ResNetBasicblock(tf.keras.layers.Layer):
def __init__(self, inplanes, planes, stride, affine=True):