Use black for lib/models

This commit is contained in:
D-X-Y
2021-05-12 16:28:05 +08:00
parent d51e5fdc7f
commit f1c47af5fa
42 changed files with 7552 additions and 4688 deletions

View File

@@ -7,144 +7,257 @@ from ..initialization import initialize_resnet
class ConvBNReLU(nn.Module):
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
if has_bn : self.bn = nn.BatchNorm2d(nOut)
else : self.bn = None
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
def __init__(
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
):
super(ConvBNReLU, self).__init__()
if has_avg:
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else:
self.avg = None
self.conv = nn.Conv2d(
nIn,
nOut,
kernel_size=kernel,
stride=stride,
padding=padding,
dilation=1,
groups=1,
bias=bias,
)
if has_bn:
self.bn = nn.BatchNorm2d(nOut)
else:
self.bn = None
if has_relu:
self.relu = nn.ReLU(inplace=True)
else:
self.relu = None
def forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.bn : out = self.bn( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
def forward(self, inputs):
if self.avg:
out = self.avg(inputs)
else:
out = inputs
conv = self.conv(out)
if self.bn:
out = self.bn(conv)
else:
out = conv
if self.relu:
out = self.relu(out)
else:
out = out
return out
return out
class ResNetBasicblock(nn.Module):
num_conv = 2
expansion = 1
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
num_conv = 2
expansion = 1
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
self.conv_a = ConvBNReLU(
inplanes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_b = ConvBNReLU(
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False)
elif inplanes != planes*self.expansion:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False)
else:
self.downsample = None
self.out_dim = planes*self.expansion
expansion = 4
num_conv = 3
def forward(self, inputs):
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv_1x1 = ConvBNReLU(
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
)
self.conv_3x3 = ConvBNReLU(
planes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_1x4 = ConvBNReLU(
planes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes * self.expansion:
self.downsample = ConvBNReLU(
inplanes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=False,
has_bn=False,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes * self.expansion
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
def forward(self, inputs):
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
class InferDepthCifarResNet(nn.Module):
def __init__(self, block_name, depth, xblocks, num_classes, zero_init_residual):
super(InferDepthCifarResNet, self).__init__()
def __init__(self, block_name, depth, xblocks, num_classes, zero_init_residual):
super(InferDepthCifarResNet, self).__init__()
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == "ResNetBasicblock":
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
layer_blocks = (depth - 2) // 6
elif block_name == "ResNetBottleneck":
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, "depth should be one of 164"
layer_blocks = (depth - 2) // 9
else:
raise ValueError("invalid block : {:}".format(block_name))
assert len(xblocks) == 3, "invalid xblocks : {:}".format(xblocks)
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
assert len(xblocks) == 3, 'invalid xblocks : {:}'.format(xblocks)
self.message = (
"InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
depth, layer_blocks
)
)
self.num_classes = num_classes
self.layers = nn.ModuleList(
[
ConvBNReLU(
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
)
]
)
self.channels = [16]
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2 ** stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append(module.out_dim)
self.layers.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:}, oC={:3d}, stride={:}".format(
stage,
iL,
layer_blocks,
len(self.layers) - 1,
planes,
module.out_dim,
stride,
)
if iL + 1 == xblocks[stage]: # reach the maximum depth
break
self.message = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.channels = [16]
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, planes, module.out_dim, stride)
if iL + 1 == xblocks[stage]: # reach the maximum depth
break
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(self.channels[-1], num_classes)
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(self.channels[-1], num_classes)
def get_message(self):
return self.message
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits
def get_message(self):
return self.message
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer(x)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits