Update Q models

This commit is contained in:
D-X-Y
2021-03-03 13:57:48 +00:00
parent 0591fcbb10
commit ead6ae0842
7 changed files with 227 additions and 160 deletions

View File

@@ -1,2 +1,4 @@
from .drop import DropBlock2d, DropPath
from .weight_init import trunc_normal_
from .positional_embedding import PositionalEncoder

View File

@@ -0,0 +1,29 @@
import torch
import torch.nn as nn
import math
class PositionalEncoder(nn.Module):
# Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
def __init__(self, d_model, max_seq_len):
super(PositionalEncoder, self).__init__()
self.d_model = d_model
# create constant 'pe' matrix with values dependant on
# pos and i
pe = torch.zeros(max_seq_len, d_model)
for pos in range(max_seq_len):
for i in range(0, d_model):
div = 10000 ** ((i // 2) * 2 / d_model)
value = pos / div
if i % 2 == 0:
pe[pos, i] = math.sin(value)
else:
pe[pos, i] = math.cos(value)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
batch, seq, fdim = x.shape[:3]
embeddings = self.pe[:, :seq, :fdim]
return x + embeddings

View File

@@ -1,7 +1,6 @@
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 #
##################################################
from __future__ import division
from __future__ import print_function
@@ -26,7 +25,7 @@ import torch
import torch.nn as nn
import torch.optim as optim
from layers import DropPath, trunc_normal_
import layers as xlayers
from qlib.model.base import Model
from qlib.data.dataset import DatasetH
@@ -182,7 +181,6 @@ class QuantTransformer(Model):
losses = []
indices = np.arange(len(x_values))
import pdb; pdb.set_trace()
for i in range(len(indices))[:: self.batch_size]:
@@ -261,6 +259,7 @@ class QuantTransformer(Model):
torch.cuda.empty_cache()
def predict(self, dataset):
if not self.fitted:
raise ValueError("model is not fitted yet!")
@@ -294,9 +293,9 @@ class QuantTransformer(Model):
# Real Model
class Mlp(nn.Module):
class MLP(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
@@ -314,8 +313,9 @@ class Mlp(nn.Module):
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
super(Attention, self).__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
@@ -345,15 +345,15 @@ class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
super(Block, self).__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
@@ -365,19 +365,18 @@ class SimpleEmbed(nn.Module):
def __init__(self, d_feat, embed_dim):
super(SimpleEmbed, self).__init__()
self.d_feat = d_feat
self.proj = nn.Linear(d_feat, embed_dim)
def forward(self, x):
import pdb; pdb.set_trace()
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
x = x.reshape(len(x), self.d_feat, -1) # [N, F*T] -> [N, F, T]
x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F]
out = self.proj(x)
return out
class TransformerModel(nn.Module):
def __init__(self,
d_feat: int,
embed_dim: int = 64,
@@ -408,11 +407,9 @@ class TransformerModel(nn.Module):
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
"""
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65)
self.pos_drop = nn.Dropout(p=drop_rate)
"""
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
@@ -425,15 +422,12 @@ class TransformerModel(nn.Module):
# regression head
self.head = nn.Linear(self.num_features, 1)
"""
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
"""
xlayers.trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
xlayers.trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
@@ -441,21 +435,22 @@ class TransformerModel(nn.Module):
nn.init.constant_(m.weight, 1.0)
def forward_features(self, x):
B = x.shape[0]
x = self.input_embed(x)
batch, flatten_size = x.shape
feats = self.input_embed(x) # batch * 60 * 64
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
cls_tokens = self.cls_token.expand(batch, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
feats_w_ct = torch.cat((cls_tokens, feats), dim=1)
feats_w_tp = self.pos_embed(feats_w_ct)
feats_w_tp = self.pos_drop(feats_w_tp)
for blk in self.blocks:
x = blk(x)
xfeats = feats_w_tp
for block in self.blocks:
xfeats = block(xfeats)
x = self.norm(x)[:, 0]
return x
xfeats = self.norm(xfeats)[:, 0]
return xfeats
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
feats = self.forward_features(x)
predicts = self.head(feats).squeeze(-1)
return predicts