Update Q models
This commit is contained in:
@@ -1,94 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
# Refer to:
|
||||
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb
|
||||
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py
|
||||
# python exps/trading/workflow_test.py
|
||||
#####################################################
|
||||
import sys, site
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
|
||||
import qlib
|
||||
import pandas as pd
|
||||
from qlib.config import REG_CN
|
||||
from qlib.contrib.model.gbdt import LGBModel
|
||||
from qlib.contrib.data.handler import Alpha158
|
||||
from qlib.contrib.strategy.strategy import TopkDropoutStrategy
|
||||
from qlib.contrib.evaluate import (
|
||||
backtest as normal_backtest,
|
||||
risk_analysis,
|
||||
)
|
||||
from qlib.utils import exists_qlib_data, init_instance_by_config
|
||||
from qlib.workflow import R
|
||||
from qlib.workflow.record_temp import SignalRecord, PortAnaRecord
|
||||
from qlib.utils import flatten_dict
|
||||
|
||||
|
||||
# use default data
|
||||
# NOTE: need to download data from remote: python scripts/get_data.py qlib_data_cn --target_dir ~/.qlib/qlib_data/cn_data
|
||||
provider_uri = "~/.qlib/qlib_data/cn_data" # target_dir
|
||||
if not exists_qlib_data(provider_uri):
|
||||
print(f"Qlib data is not found in {provider_uri}")
|
||||
sys.path.append(str(scripts_dir))
|
||||
from get_data import GetData
|
||||
GetData().qlib_data(target_dir=provider_uri, region=REG_CN)
|
||||
qlib.init(provider_uri=provider_uri, region=REG_CN)
|
||||
|
||||
|
||||
market = "csi300"
|
||||
benchmark = "SH000300"
|
||||
|
||||
|
||||
###################################
|
||||
# train model
|
||||
###################################
|
||||
data_handler_config = {
|
||||
"start_time": "2008-01-01",
|
||||
"end_time": "2020-08-01",
|
||||
"fit_start_time": "2008-01-01",
|
||||
"fit_end_time": "2014-12-31",
|
||||
"instruments": market,
|
||||
}
|
||||
|
||||
task = {
|
||||
"model": {
|
||||
"class": "QuantTransformer",
|
||||
"module_path": "trade_models",
|
||||
"kwargs": {
|
||||
"loss": "mse",
|
||||
"GPU": "0",
|
||||
"metric": "loss",
|
||||
},
|
||||
},
|
||||
"dataset": {
|
||||
"class": "DatasetH",
|
||||
"module_path": "qlib.data.dataset",
|
||||
"kwargs": {
|
||||
"handler": {
|
||||
"class": "Alpha158",
|
||||
"module_path": "qlib.contrib.data.handler",
|
||||
"kwargs": data_handler_config,
|
||||
},
|
||||
"segments": {
|
||||
"train": ("2008-01-01", "2014-12-31"),
|
||||
"valid": ("2015-01-01", "2016-12-31"),
|
||||
"test": ("2017-01-01", "2020-08-01"),
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
# model initiaiton
|
||||
model = init_instance_by_config(task["model"])
|
||||
dataset = init_instance_by_config(task["dataset"])
|
||||
|
||||
# start exp to train model
|
||||
with R.start(experiment_name="train_model"):
|
||||
R.log_params(**flatten_dict(task))
|
||||
model.fit(dataset)
|
||||
R.save_objects(trained_model=model)
|
||||
rid = R.get_recorder().id
|
100
exps/trading/workflow_tt.py
Normal file
100
exps/trading/workflow_tt.py
Normal file
@@ -0,0 +1,100 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
# Refer to:
|
||||
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb
|
||||
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py
|
||||
# python exps/trading/workflow_tt.py
|
||||
#####################################################
|
||||
import sys, site, argparse
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
import qlib
|
||||
from qlib.config import C
|
||||
import pandas as pd
|
||||
from qlib.config import REG_CN
|
||||
from qlib.contrib.model.gbdt import LGBModel
|
||||
from qlib.contrib.data.handler import Alpha158
|
||||
from qlib.contrib.strategy.strategy import TopkDropoutStrategy
|
||||
from qlib.contrib.evaluate import (
|
||||
backtest as normal_backtest,
|
||||
risk_analysis,
|
||||
)
|
||||
from qlib.utils import exists_qlib_data, init_instance_by_config
|
||||
from qlib.workflow import R
|
||||
from qlib.workflow.record_temp import SignalRecord, PortAnaRecord
|
||||
from qlib.utils import flatten_dict
|
||||
|
||||
|
||||
def main(xargs):
|
||||
dataset_config = {
|
||||
"class": "DatasetH",
|
||||
"module_path": "qlib.data.dataset",
|
||||
"kwargs": {
|
||||
"handler": {
|
||||
"class": "Alpha360",
|
||||
"module_path": "qlib.contrib.data.handler",
|
||||
"kwargs": {
|
||||
"start_time": "2008-01-01",
|
||||
"end_time": "2020-08-01",
|
||||
"fit_start_time": "2008-01-01",
|
||||
"fit_end_time": "2014-12-31",
|
||||
"instruments": xargs.market,
|
||||
"infer_processors": [
|
||||
{"class": "RobustZScoreNorm", "kwargs": {"fields_group": "feature", "clip_outlier": True}},
|
||||
{"class": "Fillna", "kwargs": {"fields_group": "feature"}},
|
||||
],
|
||||
"learn_processors": [
|
||||
{"class": "DropnaLabel"},
|
||||
{"class": "CSRankNorm", "kwargs": {"fields_group": "label"}},
|
||||
],
|
||||
"label": ["Ref($close, -2) / Ref($close, -1) - 1"],
|
||||
},
|
||||
},
|
||||
"segments": {
|
||||
"train": ("2008-01-01", "2014-12-31"),
|
||||
"valid": ("2015-01-01", "2016-12-31"),
|
||||
"test": ("2017-01-01", "2020-08-01"),
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
model_config = {
|
||||
"class": "QuantTransformer",
|
||||
"module_path": "trade_models",
|
||||
"kwargs": {
|
||||
"loss": "mse",
|
||||
"GPU": "0",
|
||||
"metric": "loss",
|
||||
},
|
||||
}
|
||||
|
||||
task = {"model": model_config, "dataset": dataset_config}
|
||||
|
||||
model = init_instance_by_config(model_config)
|
||||
dataset = init_instance_by_config(dataset_config)
|
||||
|
||||
# start exp to train model
|
||||
with R.start(experiment_name="train_tt_model"):
|
||||
R.log_params(**flatten_dict(task))
|
||||
model.fit(dataset)
|
||||
R.save_objects(trained_model=model)
|
||||
rid = R.get_recorder().id
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Vanilla Transformable Transformer")
|
||||
parser.add_argument("--save_dir", type=str, default="./outputs/tt-ml-runs", help="The checkpoint directory.")
|
||||
parser.add_argument("--market", type=str, default="csi300", help="The market indicator.")
|
||||
args = parser.parse_args()
|
||||
|
||||
provider_uri = "~/.qlib/qlib_data/cn_data" # target_dir
|
||||
exp_manager = C.exp_manager
|
||||
exp_manager["kwargs"]["uri"] = "file:{:}".format(Path(args.save_dir).resolve())
|
||||
qlib.init(provider_uri=provider_uri, region=REG_CN, exp_manager=exp_manager)
|
||||
|
||||
main(args)
|
Reference in New Issue
Block a user