update NAS-Bench
This commit is contained in:
@@ -39,6 +39,13 @@ def get_cell_based_tiny_net(config):
|
||||
genotype = CellStructure.str2structure(config.arch_str)
|
||||
else: raise ValueError('Can not find genotype from this config : {:}'.format(config))
|
||||
return TinyNetwork(config.C, config.N, genotype, config.num_classes)
|
||||
elif config.name == 'infer.shape.tiny':
|
||||
from .shape_infers import DynamicShapeTinyNet
|
||||
if isinstance(config.channels, str):
|
||||
channels = tuple([int(x) for x in config.channels.split(':')])
|
||||
else: channels = config.channels
|
||||
genotype = CellStructure.str2structure(config.genotype)
|
||||
return DynamicShapeTinyNet(channels, genotype, config.num_classes)
|
||||
elif config.name == 'infer.nasnet-cifar':
|
||||
from .cell_infers import NASNetonCIFAR
|
||||
raise NotImplementedError
|
||||
|
@@ -1,7 +1,6 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .cells import InferCell
|
||||
|
@@ -172,14 +172,19 @@ class FactorizedReduce(nn.Module):
|
||||
for i in range(2):
|
||||
self.convs.append( nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False) )
|
||||
self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
|
||||
elif stride == 1:
|
||||
self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=False)
|
||||
else:
|
||||
raise ValueError('Invalid stride : {:}'.format(stride))
|
||||
self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.relu(x)
|
||||
y = self.pad(x)
|
||||
out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1)
|
||||
if self.stride == 2:
|
||||
x = self.relu(x)
|
||||
y = self.pad(x)
|
||||
out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1)
|
||||
else:
|
||||
out = self.conv(x)
|
||||
out = self.bn(out)
|
||||
return out
|
||||
|
||||
|
@@ -14,11 +14,11 @@ from .search_model_darts_nasnet import NASNetworkDARTS
|
||||
|
||||
|
||||
nas201_super_nets = {'DARTS-V1': TinyNetworkDarts,
|
||||
'DARTS-V2': TinyNetworkDarts,
|
||||
'GDAS' : TinyNetworkGDAS,
|
||||
'SETN' : TinyNetworkSETN,
|
||||
'ENAS' : TinyNetworkENAS,
|
||||
'RANDOM' : TinyNetworkRANDOM}
|
||||
"DARTS-V2": TinyNetworkDarts,
|
||||
"GDAS": TinyNetworkGDAS,
|
||||
"SETN": TinyNetworkSETN,
|
||||
"ENAS": TinyNetworkENAS,
|
||||
"RANDOM": TinyNetworkRANDOM}
|
||||
|
||||
nasnet_super_nets = {'GDAS' : NASNetworkGDAS,
|
||||
'DARTS': NASNetworkDARTS}
|
||||
nasnet_super_nets = {"GDAS": NASNetworkGDAS,
|
||||
"DARTS": NASNetworkDARTS}
|
||||
|
@@ -1,5 +1,5 @@
|
||||
####################
|
||||
# DARTS, ICLR 2019 #
|
||||
# DARTS, ICLR 2019 #
|
||||
####################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@@ -11,7 +11,8 @@ from .search_cells import NASNetSearchCell as SearchCell
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkDARTS(nn.Module):
|
||||
|
||||
def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int, num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool):
|
||||
def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int,
|
||||
num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool):
|
||||
super(NASNetworkDARTS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
|
@@ -6,14 +6,15 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from typing import List, Text, Dict
|
||||
from .search_cells import NASNetSearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkSETN(nn.Module):
|
||||
|
||||
def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats):
|
||||
def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int,
|
||||
num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool):
|
||||
super(NASNetworkSETN, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
@@ -45,6 +46,16 @@ class NASNetworkSETN(nn.Module):
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||
self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||
self.mode = 'urs'
|
||||
self.dynamic_cell = None
|
||||
|
||||
def set_cal_mode(self, mode, dynamic_cell=None):
|
||||
assert mode in ['urs', 'joint', 'select', 'dynamic']
|
||||
self.mode = mode
|
||||
if mode == 'dynamic':
|
||||
self.dynamic_cell = deepcopy(dynamic_cell)
|
||||
else:
|
||||
self.dynamic_cell = None
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
|
||||
@@ -70,6 +81,24 @@ class NASNetworkSETN(nn.Module):
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def dync_genotype(self, use_random=False):
|
||||
genotypes = []
|
||||
with torch.no_grad():
|
||||
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
if use_random:
|
||||
op_name = random.choice(self.op_names)
|
||||
else:
|
||||
weights = alphas_cpu[ self.edge2index[node_str] ]
|
||||
op_index = torch.multinomial(weights, 1).item()
|
||||
op_name = self.op_names[ op_index ]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append( tuple(xlist) )
|
||||
return Structure( genotypes )
|
||||
|
||||
def genotype(self):
|
||||
def _parse(weights):
|
||||
gene = []
|
||||
@@ -94,9 +123,6 @@ class NASNetworkSETN(nn.Module):
|
||||
def forward(self, inputs):
|
||||
normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1)
|
||||
reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1)
|
||||
with torch.no_grad():
|
||||
normal_hardwts_cpu = normal_hardwts.detach().cpu()
|
||||
reduce_hardwts_cpu = reduce_hardwts.detach().cpu()
|
||||
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
|
@@ -1,8 +1,9 @@
|
||||
import math, torch
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
|
@@ -1,8 +1,9 @@
|
||||
import math, torch
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
|
@@ -1,8 +1,9 @@
|
||||
import math
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
|
@@ -1,8 +1,9 @@
|
||||
import math, torch
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
|
@@ -1,7 +1,10 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
|
||||
from torch import nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func, parse_channel_info
|
||||
from ..SharedUtils import parse_channel_info
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
|
58
lib/models/shape_infers/InferTinyCellNet.py
Normal file
58
lib/models/shape_infers/InferTinyCellNet.py
Normal file
@@ -0,0 +1,58 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
from typing import List, Text, Any
|
||||
import torch.nn as nn
|
||||
from models.cell_operations import ResNetBasicblock
|
||||
from models.cell_infers.cells import InferCell
|
||||
|
||||
|
||||
class DynamicShapeTinyNet(nn.Module):
|
||||
|
||||
def __init__(self, channels: List[int], genotype: Any, num_classes: int):
|
||||
super(DynamicShapeTinyNet, self).__init__()
|
||||
self._channels = channels
|
||||
if len(channels) % 3 != 2:
|
||||
raise ValueError('invalid number of layers : {:}'.format(len(channels)))
|
||||
self._num_stage = N = len(channels) // 3
|
||||
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(channels[0]))
|
||||
|
||||
# layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
c_prev = channels[0]
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)):
|
||||
if reduction : cell = ResNetBasicblock(c_prev, c_curr, 2, True)
|
||||
else : cell = InferCell(genotype, c_prev, c_curr, 1)
|
||||
self.cells.append( cell )
|
||||
c_prev = cell.out_dim
|
||||
self._num_layer = len(self.cells)
|
||||
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(c_prev, num_classes)
|
||||
|
||||
def get_message(self) -> Text:
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_channels}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def forward(self, inputs):
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
@@ -1,5 +1,9 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
from .InferCifarResNet_width import InferWidthCifarResNet
|
||||
from .InferImagenetResNet import InferImagenetResNet
|
||||
from .InferImagenetResNet import InferImagenetResNet
|
||||
from .InferCifarResNet_depth import InferDepthCifarResNet
|
||||
from .InferCifarResNet import InferCifarResNet
|
||||
from .InferMobileNetV2 import InferMobileNetV2
|
||||
from .InferCifarResNet import InferCifarResNet
|
||||
from .InferMobileNetV2 import InferMobileNetV2
|
||||
from .InferTinyCellNet import DynamicShapeTinyNet
|
Reference in New Issue
Block a user