Reformulate Math Functions
This commit is contained in:
@@ -5,6 +5,8 @@ from .get_dataset_with_transform import get_datasets, get_nas_search_loaders
|
||||
from .SearchDatasetWrap import SearchDataset
|
||||
|
||||
from .math_base_funcs import QuadraticFunc, CubicFunc, QuarticFunc
|
||||
from .math_base_funcs import DynamicQuadraticFunc
|
||||
from .synthetic_utils import SinGenerator, ConstantGenerator
|
||||
from .math_adv_funcs import DynamicQuadraticFunc, ConstantFunc
|
||||
from .math_adv_funcs import ComposedSinFunc
|
||||
|
||||
from .synthetic_utils import TimeStamp
|
||||
from .synthetic_env import SyntheticDEnv
|
||||
|
121
lib/datasets/math_adv_funcs.py
Normal file
121
lib/datasets/math_adv_funcs.py
Normal file
@@ -0,0 +1,121 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
import math
|
||||
import abc
|
||||
import copy
|
||||
import numpy as np
|
||||
from typing import Optional
|
||||
import torch
|
||||
import torch.utils.data as data
|
||||
|
||||
from .math_base_funcs import FitFunc
|
||||
from .math_base_funcs import QuadraticFunc
|
||||
from .math_base_funcs import QuarticFunc
|
||||
|
||||
|
||||
class DynamicQuadraticFunc(FitFunc):
|
||||
"""The dynamic quadratic function that outputs f(x) = a * x^2 + b * x + c.
|
||||
The a, b, and c is a function of timestamp.
|
||||
"""
|
||||
|
||||
def __init__(self, list_of_points=None):
|
||||
super(DynamicQuadraticFunc, self).__init__(3, list_of_points)
|
||||
self._timestamp = None
|
||||
|
||||
def __call__(self, x, timestamp=None):
|
||||
self.check_valid()
|
||||
if timestamp is None:
|
||||
timestamp = self._timestamp
|
||||
a = self._params[0](timestamp)
|
||||
b = self._params[1](timestamp)
|
||||
c = self._params[2](timestamp)
|
||||
convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x
|
||||
a, b, c = convert_fn(a), convert_fn(b), convert_fn(c)
|
||||
return a * x * x + b * x + c
|
||||
|
||||
def _getitem(self, x, weights):
|
||||
raise NotImplementedError
|
||||
|
||||
def set_timestamp(self, timestamp):
|
||||
self._timestamp = timestamp
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}({a} * x^2 + {b} * x + {c})".format(
|
||||
name=self.__class__.__name__,
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
c=self._params[2],
|
||||
)
|
||||
|
||||
|
||||
class ConstantFunc(FitFunc):
|
||||
"""The constant function: f(x) = c."""
|
||||
|
||||
def __init__(self, constant=None):
|
||||
param = dict()
|
||||
param[0] = constant
|
||||
super(ConstantFunc, self).__init__(0, None, param)
|
||||
|
||||
def __call__(self, x):
|
||||
self.check_valid()
|
||||
return self._params[0]
|
||||
|
||||
def fit(self, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def _getitem(self, x, weights):
|
||||
raise NotImplementedError
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}({a})".format(name=self.__class__.__name__, a=self._params[0])
|
||||
|
||||
|
||||
class ComposedSinFunc(FitFunc):
|
||||
"""The composed sin function that outputs:
|
||||
f(x) = amplitude-scale-of(x) * sin( period-phase-shift-of(x) )
|
||||
- the amplitude scale is a quadratic function of x
|
||||
- the period-phase-shift is another quadratic function of x
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(ComposedSinFunc, self).__init__(0, None)
|
||||
self.fit(**kwargs)
|
||||
|
||||
def __call__(self, x):
|
||||
self.check_valid()
|
||||
scale = self._params["amplitude_scale"](x)
|
||||
period_phase = self._params["period_phase_shift"](x)
|
||||
return scale * math.sin(period_phase)
|
||||
|
||||
def fit(self, **kwargs):
|
||||
num_sin_phase = kwargs.get("num_sin_phase", 7)
|
||||
min_amplitude = kwargs.get("min_amplitude", 1)
|
||||
max_amplitude = kwargs.get("max_amplitude", 4)
|
||||
phase_shift = kwargs.get("phase_shift", 0.0)
|
||||
# create parameters
|
||||
amplitude_scale = QuadraticFunc(
|
||||
[(0, min_amplitude), (0.5, max_amplitude), (1, min_amplitude)]
|
||||
)
|
||||
fitting_data = []
|
||||
temp_max_scalar = 2 ** (num_sin_phase - 1)
|
||||
for i in range(num_sin_phase):
|
||||
value = (2 ** i) / temp_max_scalar
|
||||
next_value = (2 ** (i + 1)) / temp_max_scalar
|
||||
for _phase in (0, 0.25, 0.5, 0.75):
|
||||
inter_value = value + (next_value - value) * _phase
|
||||
fitting_data.append((inter_value, math.pi * (2 * i + _phase)))
|
||||
period_phase_shift = QuarticFunc(fitting_data)
|
||||
self.set(
|
||||
dict(amplitude_scale=amplitude_scale, period_phase_shift=period_phase_shift)
|
||||
)
|
||||
|
||||
def _getitem(self, x, weights):
|
||||
raise NotImplementedError
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}({amplitude_scale} * sin({period_phase_shift}))".format(
|
||||
name=self.__class__.__name__,
|
||||
amplitude_scale=self._params["amplitude_scale"],
|
||||
period_phase_shift=self._params["period_phase_shift"],
|
||||
)
|
@@ -13,13 +13,17 @@ import torch.utils.data as data
|
||||
class FitFunc(abc.ABC):
|
||||
"""The fit function that outputs f(x) = a * x^2 + b * x + c."""
|
||||
|
||||
def __init__(self, freedom: int, list_of_points=None):
|
||||
def __init__(self, freedom: int, list_of_points=None, _params=None):
|
||||
self._params = dict()
|
||||
for i in range(freedom):
|
||||
self._params[i] = None
|
||||
self._freedom = freedom
|
||||
if list_of_points is not None and _params is not None:
|
||||
raise ValueError("list_of_points and _params can not be set simultaneously")
|
||||
if list_of_points is not None:
|
||||
self.fit(list_of_points)
|
||||
self.fit(list_of_points=list_of_points)
|
||||
if _params is not None:
|
||||
self.set(_params)
|
||||
|
||||
def set(self, _params):
|
||||
self._params = copy.deepcopy(_params)
|
||||
@@ -45,13 +49,13 @@ class FitFunc(abc.ABC):
|
||||
def _getitem(self, x):
|
||||
raise NotImplementedError
|
||||
|
||||
def fit(
|
||||
self,
|
||||
list_of_points,
|
||||
max_iter=900,
|
||||
lr_max=1.0,
|
||||
verbose=False,
|
||||
):
|
||||
def fit(self, **kwargs):
|
||||
list_of_points = kwargs["list_of_points"]
|
||||
max_iter, lr_max, verbose = (
|
||||
kwargs.get("max_iter", 900),
|
||||
kwargs.get("lr_max", 1.0),
|
||||
kwargs.get("verbose", False),
|
||||
)
|
||||
with torch.no_grad():
|
||||
data = torch.Tensor(list_of_points).type(torch.float32)
|
||||
assert data.ndim == 2 and data.size(1) == 2, "Invalid shape : {:}".format(
|
||||
@@ -113,7 +117,7 @@ class QuadraticFunc(FitFunc):
|
||||
return weights[0] * x * x + weights[1] * x + weights[2]
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(y = {a} * x^2 + {b} * x + {c})".format(
|
||||
return "{name}({a} * x^2 + {b} * x + {c})".format(
|
||||
name=self.__class__.__name__,
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
@@ -140,7 +144,7 @@ class CubicFunc(FitFunc):
|
||||
return weights[0] * x ** 3 + weights[1] * x ** 2 + weights[2] * x + weights[3]
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(y = {a} * x^3 + {b} * x^2 + {c} * x + {d})".format(
|
||||
return "{name}({a} * x^3 + {b} * x^2 + {c} * x + {d})".format(
|
||||
name=self.__class__.__name__,
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
@@ -175,7 +179,7 @@ class QuarticFunc(FitFunc):
|
||||
)
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(y = {a} * x^4 + {b} * x^3 + {c} * x^2 + {d} * x + {e})".format(
|
||||
return "{name}({a} * x^4 + {b} * x^3 + {c} * x^2 + {d} * x + {e})".format(
|
||||
name=self.__class__.__name__,
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
@@ -183,34 +187,3 @@ class QuarticFunc(FitFunc):
|
||||
d=self._params[3],
|
||||
e=self._params[3],
|
||||
)
|
||||
|
||||
|
||||
class DynamicQuadraticFunc(FitFunc):
|
||||
"""The dynamic quadratic function that outputs f(x) = a * x^2 + b * x + c."""
|
||||
|
||||
def __init__(self, list_of_points=None):
|
||||
super(DynamicQuadraticFunc, self).__init__(3, list_of_points)
|
||||
self._timestamp = None
|
||||
|
||||
def __call__(self, x):
|
||||
self.check_valid()
|
||||
a = self._params[0][self._timestamp]
|
||||
b = self._params[1][self._timestamp]
|
||||
c = self._params[2][self._timestamp]
|
||||
convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x
|
||||
a, b, c = convert_fn(a), convert_fn(b), convert_fn(c)
|
||||
return a * x * x + b * x + c
|
||||
|
||||
def _getitem(self, x, weights):
|
||||
raise NotImplementedError
|
||||
|
||||
def set_timestamp(self, timestamp):
|
||||
self._timestamp = timestamp
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(y = {a} * x^2 + {b} * x + {c})".format(
|
||||
name=self.__class__.__name__,
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
c=self._params[2],
|
||||
)
|
||||
|
@@ -4,45 +4,42 @@
|
||||
import math
|
||||
import abc
|
||||
import numpy as np
|
||||
from typing import List, Optional
|
||||
from typing import List, Optional, Dict
|
||||
import torch
|
||||
import torch.utils.data as data
|
||||
|
||||
from .synthetic_utils import UnifiedSplit
|
||||
from .synthetic_utils import TimeStamp
|
||||
|
||||
|
||||
class SyntheticDEnv(UnifiedSplit, data.Dataset):
|
||||
class SyntheticDEnv(data.Dataset):
|
||||
"""The synethtic dynamic environment."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mean_generators: List[data.Dataset],
|
||||
cov_generators: List[List[data.Dataset]],
|
||||
mean_functors: List[data.Dataset],
|
||||
cov_functors: List[List[data.Dataset]],
|
||||
num_per_task: int = 5000,
|
||||
time_stamp_config: Optional[Dict] = None,
|
||||
mode: Optional[str] = None,
|
||||
):
|
||||
self._ndim = len(mean_generators)
|
||||
self._ndim = len(mean_functors)
|
||||
assert self._ndim == len(
|
||||
cov_generators
|
||||
), "length does not match {:} vs. {:}".format(self._ndim, len(cov_generators))
|
||||
for cov_generator in cov_generators:
|
||||
cov_functors
|
||||
), "length does not match {:} vs. {:}".format(self._ndim, len(cov_functors))
|
||||
for cov_functor in cov_functors:
|
||||
assert self._ndim == len(
|
||||
cov_generator
|
||||
), "length does not match {:} vs. {:}".format(
|
||||
self._ndim, len(cov_generator)
|
||||
)
|
||||
cov_functor
|
||||
), "length does not match {:} vs. {:}".format(self._ndim, len(cov_functor))
|
||||
self._num_per_task = num_per_task
|
||||
self._total_num = len(mean_generators[0])
|
||||
for mean_generator in mean_generators:
|
||||
assert self._total_num == len(mean_generator)
|
||||
for cov_generator in cov_generators:
|
||||
for cov_g in cov_generator:
|
||||
assert self._total_num == len(cov_g)
|
||||
if time_stamp_config is None:
|
||||
time_stamp_config = dict(mode=mode)
|
||||
else:
|
||||
time_stamp_config["mode"] = mode
|
||||
|
||||
self._mean_generators = mean_generators
|
||||
self._cov_generators = cov_generators
|
||||
self._timestamp_generator = TimeStamp(**time_stamp_config)
|
||||
|
||||
UnifiedSplit.__init__(self, self._total_num, mode)
|
||||
self._mean_functors = mean_functors
|
||||
self._cov_functors = cov_functors
|
||||
|
||||
def __iter__(self):
|
||||
self._iter_num = 0
|
||||
@@ -56,11 +53,11 @@ class SyntheticDEnv(UnifiedSplit, data.Dataset):
|
||||
|
||||
def __getitem__(self, index):
|
||||
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
|
||||
index = self._indexes[index]
|
||||
mean_list = [generator[index][-1] for generator in self._mean_generators]
|
||||
index, timestamp = self._timestamp_generator[index]
|
||||
mean_list = [functor(timestamp) for functor in self._mean_functors]
|
||||
cov_matrix = [
|
||||
[cov_gen[index][-1] for cov_gen in cov_generator]
|
||||
for cov_generator in self._cov_generators
|
||||
[cov_gen(timestamp) for cov_gen in cov_functor]
|
||||
for cov_functor in self._cov_functors
|
||||
]
|
||||
|
||||
dataset = np.random.multivariate_normal(
|
||||
@@ -69,13 +66,13 @@ class SyntheticDEnv(UnifiedSplit, data.Dataset):
|
||||
return index, torch.Tensor(dataset)
|
||||
|
||||
def __len__(self):
|
||||
return len(self._indexes)
|
||||
return len(self._timestamp_generator)
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task})".format(
|
||||
name=self.__class__.__name__,
|
||||
cur_num=len(self),
|
||||
total=self._total_num,
|
||||
total=len(self._timestamp_generator),
|
||||
ndim=self._ndim,
|
||||
num_per_task=self._num_per_task,
|
||||
)
|
||||
|
@@ -3,25 +3,30 @@
|
||||
#####################################################
|
||||
|
||||
from .math_base_funcs import DynamicQuadraticFunc
|
||||
from .synthetic_utils import ConstantGenerator, SinGenerator
|
||||
from .math_adv_funcs import ConstantFunc, ComposedSinFunc
|
||||
from .synthetic_env import SyntheticDEnv
|
||||
|
||||
|
||||
def create_example_v1(timestamps=50, num_per_task=5000):
|
||||
mean_generator = SinGenerator(num=timestamps)
|
||||
std_generator = SinGenerator(num=timestamps, min_amplitude=0.5, max_amplitude=0.5)
|
||||
mean_generator = ComposedSinFunc()
|
||||
std_generator = ComposedSinFunc(min_amplitude=0.5, max_amplitude=0.5)
|
||||
std_generator.set_transform(lambda x: x + 1)
|
||||
|
||||
dynamic_env = SyntheticDEnv(
|
||||
[mean_generator], [[std_generator]], num_per_task=num_per_task
|
||||
[mean_generator],
|
||||
[[std_generator]],
|
||||
num_per_task=num_per_task,
|
||||
time_stamp_config=dict(num=timestamps),
|
||||
)
|
||||
|
||||
function = DynamicQuadraticFunc()
|
||||
function_param = dict()
|
||||
function_param[0] = SinGenerator(
|
||||
num=timestamps, num_sin_phase=4, phase_shift=1.0, max_amplitude=1.0
|
||||
function_param[0] = ComposedSinFunc(
|
||||
num_sin_phase=4, phase_shift=1.0, max_amplitude=1.0
|
||||
)
|
||||
function_param[1] = ConstantGenerator(constant=0.9)
|
||||
function_param[2] = SinGenerator(
|
||||
num=timestamps, num_sin_phase=5, phase_shift=0.4, max_amplitude=0.9
|
||||
function_param[1] = ConstantFunc(constant=0.9)
|
||||
function_param[2] = ComposedSinFunc(
|
||||
num_sin_phase=5, phase_shift=0.4, max_amplitude=0.9
|
||||
)
|
||||
function.set(function_param)
|
||||
return dynamic_env, function
|
||||
|
@@ -8,8 +8,6 @@ from typing import Optional
|
||||
import torch
|
||||
import torch.utils.data as data
|
||||
|
||||
from .math_base_funcs import QuadraticFunc, QuarticFunc
|
||||
|
||||
|
||||
class UnifiedSplit:
|
||||
"""A class to unify the split strategy."""
|
||||
@@ -39,102 +37,20 @@ class UnifiedSplit:
|
||||
return self._mode
|
||||
|
||||
|
||||
class SinGenerator(UnifiedSplit, data.Dataset):
|
||||
"""The synethtic generator for the dynamically changing environment.
|
||||
|
||||
- x in [0, 1]
|
||||
- y = amplitude-scale-of(x) * sin( period-phase-shift-of(x) )
|
||||
- where
|
||||
- the amplitude scale is a quadratic function of x
|
||||
- the period-phase-shift is another quadratic function of x
|
||||
|
||||
"""
|
||||
class TimeStamp(UnifiedSplit, data.Dataset):
|
||||
"""The timestamp dataset."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
min_timestamp: float = 0.0,
|
||||
max_timestamp: float = 1.0,
|
||||
num: int = 100,
|
||||
num_sin_phase: int = 7,
|
||||
min_amplitude: float = 1,
|
||||
max_amplitude: float = 4,
|
||||
phase_shift: float = 0,
|
||||
mode: Optional[str] = None,
|
||||
):
|
||||
self._amplitude_scale = QuadraticFunc(
|
||||
[(0, min_amplitude), (0.5, max_amplitude), (1, min_amplitude)]
|
||||
)
|
||||
|
||||
self._num_sin_phase = num_sin_phase
|
||||
self._interval = 1.0 / (float(num) - 1)
|
||||
self._min_timestamp = min_timestamp
|
||||
self._max_timestamp = max_timestamp
|
||||
self._interval = (max_timestamp - min_timestamp) / (float(num) - 1)
|
||||
self._total_num = num
|
||||
|
||||
fitting_data = []
|
||||
temp_max_scalar = 2 ** (num_sin_phase - 1)
|
||||
for i in range(num_sin_phase):
|
||||
value = (2 ** i) / temp_max_scalar
|
||||
next_value = (2 ** (i + 1)) / temp_max_scalar
|
||||
for _phase in (0, 0.25, 0.5, 0.75):
|
||||
inter_value = value + (next_value - value) * _phase
|
||||
fitting_data.append((inter_value, math.pi * (2 * i + _phase)))
|
||||
self._period_phase_shift = QuarticFunc(fitting_data)
|
||||
UnifiedSplit.__init__(self, self._total_num, mode)
|
||||
self._transform = None
|
||||
|
||||
def __iter__(self):
|
||||
self._iter_num = 0
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self._iter_num >= len(self):
|
||||
raise StopIteration
|
||||
self._iter_num += 1
|
||||
return self.__getitem__(self._iter_num - 1)
|
||||
|
||||
def set_transform(self, transform):
|
||||
self._transform = transform
|
||||
|
||||
def transform(self, x):
|
||||
if self._transform is None:
|
||||
return x
|
||||
else:
|
||||
return self._transform(x)
|
||||
|
||||
def __getitem__(self, index):
|
||||
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
|
||||
index = self._indexes[index]
|
||||
position = self._interval * index
|
||||
value = self._amplitude_scale(position) * math.sin(
|
||||
self._period_phase_shift(position)
|
||||
)
|
||||
return index, position, self.transform(value)
|
||||
|
||||
def __len__(self):
|
||||
return len(self._indexes)
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
"{name}({cur_num:}/{total} elements,\n"
|
||||
"amplitude={amplitude},\n"
|
||||
"period_phase_shift={period_phase_shift})".format(
|
||||
name=self.__class__.__name__,
|
||||
cur_num=len(self),
|
||||
total=self._total_num,
|
||||
amplitude=self._amplitude_scale,
|
||||
period_phase_shift=self._period_phase_shift,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class ConstantGenerator(UnifiedSplit, data.Dataset):
|
||||
"""The constant generator."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num: int = 100,
|
||||
constant: float = 0.1,
|
||||
mode: Optional[str] = None,
|
||||
):
|
||||
self._total_num = num
|
||||
self._constant = constant
|
||||
UnifiedSplit.__init__(self, self._total_num, mode)
|
||||
|
||||
def __iter__(self):
|
||||
@@ -150,7 +66,8 @@ class ConstantGenerator(UnifiedSplit, data.Dataset):
|
||||
def __getitem__(self, index):
|
||||
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
|
||||
index = self._indexes[index]
|
||||
return index, index, self._constant
|
||||
timestamp = self._min_timestamp + self._interval * index
|
||||
return index, timestamp
|
||||
|
||||
def __len__(self):
|
||||
return len(self._indexes)
|
||||
|
Reference in New Issue
Block a user