Add SuperAttention
This commit is contained in:
@@ -26,6 +26,7 @@ class TestSuperLinear(unittest.TestCase):
|
||||
bias = spaces.Categorical(True, False)
|
||||
model = super_core.SuperLinear(10, out_features, bias=bias)
|
||||
print("The simple super linear module is:\n{:}".format(model))
|
||||
model.apply_verbose(True)
|
||||
|
||||
print(model.super_run_type)
|
||||
self.assertTrue(model.bias)
|
||||
@@ -55,6 +56,7 @@ class TestSuperLinear(unittest.TestCase):
|
||||
out_features = spaces.Categorical(24, 36, 48)
|
||||
mlp = super_core.SuperMLP(10, hidden_features, out_features)
|
||||
print(mlp)
|
||||
mlp.apply_verbose(True)
|
||||
self.assertTrue(mlp.fc1._out_features, mlp.fc2._in_features)
|
||||
|
||||
inputs = torch.rand(4, 10)
|
||||
@@ -85,3 +87,29 @@ class TestSuperLinear(unittest.TestCase):
|
||||
outputs = mlp(inputs)
|
||||
output_shape = (4, abstract_child["fc2"]["_out_features"].value)
|
||||
self.assertEqual(tuple(outputs.shape), output_shape)
|
||||
|
||||
def test_super_attention(self):
|
||||
proj_dim = spaces.Categorical(12, 24, 36)
|
||||
num_heads = spaces.Categorical(2, 4, 6)
|
||||
model = super_core.SuperAttention(10, proj_dim, num_heads)
|
||||
print(model)
|
||||
model.apply_verbose(True)
|
||||
|
||||
inputs = torch.rand(4, 20, 10) # batch size, sequence length, channel
|
||||
outputs = model(inputs)
|
||||
|
||||
abstract_space = model.abstract_search_space
|
||||
print(
|
||||
"The abstract search space for SuperAttention is:\n{:}".format(
|
||||
abstract_space
|
||||
)
|
||||
)
|
||||
abstract_space.clean_last()
|
||||
abstract_child = abstract_space.random(reuse_last=True)
|
||||
print("The abstract child program is:\n{:}".format(abstract_child))
|
||||
|
||||
model.set_super_run_type(super_core.SuperRunMode.Candidate)
|
||||
model.apply_candidate(abstract_child)
|
||||
outputs = model(inputs)
|
||||
output_shape = (4, 20, abstract_child["proj"]["_out_features"].value)
|
||||
self.assertEqual(tuple(outputs.shape), output_shape)
|
||||
|
Reference in New Issue
Block a user