Update LFNA with resume

This commit is contained in:
D-X-Y
2021-05-17 04:33:40 +00:00
parent b11cfe263d
commit de8cf677d9
3 changed files with 62 additions and 18 deletions

View File

@@ -101,21 +101,49 @@ def main(args):
)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
int(args.epochs * 0.8),
int(args.epochs * 0.9),
],
milestones=[1, 2],
gamma=0.1,
)
logger.log("The base-model is\n{:}".format(base_model))
logger.log("The meta-model is\n{:}".format(meta_model))
logger.log("The optimizer is\n{:}".format(optimizer))
logger.log("The scheduler is\n{:}".format(lr_scheduler))
logger.log("Per epoch iterations = {:}".format(len(env_loader)))
# LFNA meta-training
if logger.path("model").exists():
ckp_data = torch.load(logger.path("model"))
base_model.load_state_dict(ckp_data["base_model"])
meta_model.load_state_dict(ckp_data["meta_model"])
optimizer.load_state_dict(ckp_data["optimizer"])
lr_scheduler.load_state_dict(ckp_data["lr_scheduler"])
last_success_epoch = ckp_data["last_success_epoch"]
start_epoch = ckp_data["iepoch"] + 1
check_strs = [
"epochs",
"env_version",
"hidden_dim",
"init_lr",
"layer_dim",
"time_dim",
"seq_length",
]
for xstr in check_strs:
cx = getattr(args, xstr)
px = getattr(ckp_data["args"], xstr)
assert cx == px, "[{:}] {:} vs {:}".format(xstr, cx, ps)
success, _ = meta_model.save_best(ckp_data["cur_score"])
logger.log("Load ckp from {:}".format(logger.path("model")))
if success:
logger.log(
"Re-save the best model with score={:}".format(ckp_data["cur_score"])
)
else:
start_epoch, last_success_epoch = 0, 0
# LFNA meta-train
meta_model.set_best_dir(logger.path(None) / "checkpoint")
per_epoch_time, start_time = AverageMeter(), time.time()
last_success_epoch = 0
for iepoch in range(args.epochs):
for iepoch in range(start_epoch, args.epochs):
head_str = "[{:}] [{:04d}/{:04d}] ".format(
time_string(), iepoch, args.epochs
@@ -132,11 +160,11 @@ def main(args):
args.device,
logger,
)
lr_scheduler.step()
logger.log(
head_str
+ " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter)
+ " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr()))
+ " :: last-success={:}".format(last_success_epoch)
)
success, best_score = meta_model.save_best(-loss_meter.avg)
if success:
@@ -145,8 +173,11 @@ def main(args):
save_checkpoint(
{
"meta_model": meta_model.state_dict(),
"base_model": base_model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"last_success_epoch": last_success_epoch,
"cur_score": -loss_meter.avg,
"iepoch": iepoch,
"args": args,
},
@@ -154,8 +185,12 @@ def main(args):
logger,
)
if iepoch - last_success_epoch >= args.early_stop_thresh:
logger.log("Early stop at {:}".format(iepoch))
break
if lr_scheduler.last_epoch > 2:
logger.log("Early stop at {:}".format(iepoch))
break
else:
last_epoch.step()
logger.log("Decay the lr [{:}]".format(lr_scheduler.last_epoch))
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
@@ -199,7 +234,7 @@ def main(args):
[new_param], lr=args.init_lr, weight_decay=1e-5, amsgrad=True
)
meta_model.replace_append_learnt(
torch.Tensor([future_time], device=args.device), new_param
torch.Tensor([future_time]).to(args.device), new_param
)
meta_model.eval()
base_model.train()
@@ -289,8 +324,8 @@ if __name__ == "__main__":
parser.add_argument(
"--early_stop_thresh",
type=int,
default=100,
help="The maximum epochs for early stop.",
default=50,
help="The #epochs for early stop.",
)
parser.add_argument(
"--seq_length", type=int, default=5, help="The sequence length."