diff --git a/NAS-Bench-102.md b/NAS-Bench-102.md
index a2e1503..f14ce1e 100644
--- a/NAS-Bench-102.md
+++ b/NAS-Bench-102.md
@@ -18,6 +18,7 @@ The benchmark file of NAS-Bench-102 can be downloaded from [Google Drive](https:
 You can move it to anywhere you want and send its path to our API for initialization.
 - v1.0: `NAS-Bench-102-v1_0-e61699.pth`, where `e61699` is the last six digits for this file. It contains all information except for the trained weights of each trial.
 - v1.0: The full data of each architecture can be download from [Google Drive](https://drive.google.com/open?id=1X2i-JXaElsnVLuGgM4tP-yNwtsspXgdQ) (about 226GB). This compressed folder has 15625 files containing the the trained weights.
+- v1.0: Checkpoints for 3 runs of each baseline NAS algorithm are provided in [Google Drive](https://drive.google.com/open?id=1eAgLZQAViP3r6dA0_ZOOGG9zPLXhGwXi).
 
 The training and evaluation data used in NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ).
 It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). If you want to generate NAS-Bench-102 or similar NAS datasets or training models by yourself, you need these data.
diff --git a/exps/NAS-Bench-102/visualize.py b/exps/NAS-Bench-102/visualize.py
index 992bb61..e08d474 100644
--- a/exps/NAS-Bench-102/visualize.py
+++ b/exps/NAS-Bench-102/visualize.py
@@ -464,18 +464,17 @@ def just_show(api):
     print ('[{:10s}-{:10s} ::: index={:5d}, accuracy={:.2f}'.format(dataset, metric_on_set, arch_index, highest_acc))
 
 
-def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims):
+def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims, x_maxs):
   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k']
   dpi, width, height = 300, 3400, 2600
   LabelSize, LegendFontsize = 28, 28
   figsize = width / float(dpi), height / float(dpi)
   fig = plt.figure(figsize=figsize)
-  x_maxs = 250
-  x_axis = np.arange(0, x_maxs)
-  plt.xlim(0, x_maxs)
+  #x_maxs = 250
+  plt.xlim(0, x_maxs+1)
   plt.ylim(y_lims[0], y_lims[1])
   interval_x, interval_y = x_maxs // 5, y_lims[2]
-  plt.xticks(np.arange(0, x_maxs, interval_x), fontsize=LegendFontsize)
+  plt.xticks(np.arange(0, x_maxs+1, interval_x), fontsize=LegendFontsize)
   plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize)
   plt.grid()
   plt.xlabel('The searching epoch', fontsize=LabelSize)
@@ -505,17 +504,24 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims):
       xresults.append( metrics['accuracy'] )
     return xresults
 
-  for idx, method in enumerate(['RSPS', 'GDAS', 'SETN', 'ENAS']):
+  if x_maxs == 50:
+    xox, xxxstrs = 'v2', ['DARTS-V1', 'DARTS-V2']
+  elif x_maxs == 250:
+    xox, xxxstrs = 'v1', ['RSPS', 'GDAS', 'SETN', 'ENAS']
+  else: raise ValueError('invalid x_maxs={:}'.format(x_maxs))
+
+  for idx, method in enumerate(xxxstrs):
     xkey = method
     all_paths = [ '{:}/seed-{:}-basic.pth'.format(xpaths[xkey], seed) for seed in xseeds[xkey] ]
-    all_datas = [torch.load(xpath) for xpath in all_paths]
+    all_datas = [torch.load(xpath, map_location='cpu') for xpath in all_paths]
     accyss = [get_accs(xdatas) for xdatas in all_datas]
     accyss = np.array( accyss )
     epochs = list(range(accyss.shape[1]))
     plt.plot(epochs, [accyss[:,i].mean() for i in epochs], color=color_set[idx], linestyle='-', label='{:}'.format(method), lw=2)
     plt.fill_between(epochs, [accyss[:,i].mean()-accyss[:,i].std() for i in epochs], [accyss[:,i].mean()+accyss[:,i].std() for i in epochs], alpha=0.2, color=color_set[idx])
-  plt.legend(loc=4, fontsize=LegendFontsize)
-  save_path = vis_save_dir / '{:}-{:}-{:}'.format(dataset, subset, file_name)
+  #plt.legend(loc=4, fontsize=LegendFontsize)
+  plt.legend(loc=0, fontsize=LegendFontsize)
+  save_path = vis_save_dir / '{:}-{:}-{:}-{:}'.format(xox, dataset, subset, file_name)
   print('save figure into {:}\n'.format(save_path))
   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf')
 
@@ -540,7 +546,13 @@ if __name__ == '__main__':
   #visualize_relative_ranking(vis_save_dir)
 
   api = API(args.api_path)
-  show_nas_sharing_w(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (5,95,10))
+  for x_maxs in [50, 250]:
+    show_nas_sharing_w(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
+    show_nas_sharing_w(api, 'cifar10'       , 'ori-test', vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
+    show_nas_sharing_w(api, 'cifar100'      , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
+    show_nas_sharing_w(api, 'cifar100'      , 'x-test'  , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
+    show_nas_sharing_w(api, 'ImageNet16-120', 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
+    show_nas_sharing_w(api, 'ImageNet16-120', 'x-test'  , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
   """
   just_show(api)
   plot_results_nas(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-com.pdf', (85,95, 1))
diff --git a/exps/vis/test.py b/exps/vis/test.py
index 1c6f2b2..17ccb95 100644
--- a/exps/vis/test.py
+++ b/exps/vis/test.py
@@ -1,11 +1,12 @@
 # python ./exps/vis/test.py
-import os, sys
+import os, sys, random
 from pathlib import Path
 import torch
 import numpy as np
 from collections import OrderedDict
 lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
 if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
+from graphviz import Digraph
 
 
 def test_nas_api():
@@ -23,5 +24,35 @@ def test_nas_api():
     print(archRes.get_metrics('cifar10-valid', 'x-valid', None,  True))
     print(archRes.query('cifar10-valid', 777))
 
+
+OPS    = ['skip-connect', 'conv-1x1', 'conv-3x3', 'pool-3x3']
+COLORS = ['chartreuse'  , 'cyan'    , 'navyblue', 'chocolate1']
+
+def plot(filename):
+  g = Digraph(
+      format='png',
+      edge_attr=dict(fontsize='20', fontname="times"),
+      node_attr=dict(style='filled', shape='rect', align='center', fontsize='20', height='0.5', width='0.5', penwidth='2', fontname="times"),
+      engine='dot')
+  g.body.extend(['rankdir=LR'])
+
+  steps = 5
+  for i in range(0, steps):
+    if i == 0:
+      g.node(str(i), fillcolor='darkseagreen2')
+    elif i+1 == steps:
+      g.node(str(i), fillcolor='palegoldenrod')
+    else: g.node(str(i), fillcolor='lightblue')
+
+  for i in range(1, steps):
+    for xin in range(i):
+      op_i = random.randint(0, len(OPS)-1)
+      #g.edge(str(xin), str(i), label=OPS[op_i], fillcolor=COLORS[op_i])
+      g.edge(str(xin), str(i), label=OPS[op_i], color=COLORS[op_i], fillcolor=COLORS[op_i])
+      #import pdb; pdb.set_trace()
+  g.render(filename, cleanup=True, view=False)
+
+
 if __name__ == '__main__':
   test_nas_api()
+  for i in range(200): plot('{:04d}'.format(i))