Update LFNA ablation codes
This commit is contained in:
97
exps/LFNA/lfna_models.py
Normal file
97
exps/LFNA/lfna_models.py
Normal file
@@ -0,0 +1,97 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
import copy
|
||||
import torch
|
||||
|
||||
from xlayers import super_core
|
||||
from xlayers import trunc_normal_
|
||||
from models.xcore import get_model
|
||||
|
||||
|
||||
class HyperNet(super_core.SuperModule):
|
||||
"""The hyper-network."""
|
||||
|
||||
def __init__(
|
||||
self, shape_container, layer_embeding, task_embedding, return_container=True
|
||||
):
|
||||
super(HyperNet, self).__init__()
|
||||
self._shape_container = shape_container
|
||||
self._num_layers = len(shape_container)
|
||||
self._numel_per_layer = []
|
||||
for ilayer in range(self._num_layers):
|
||||
self._numel_per_layer.append(shape_container[ilayer].numel())
|
||||
|
||||
self.register_parameter(
|
||||
"_super_layer_embed",
|
||||
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)),
|
||||
)
|
||||
trunc_normal_(self._super_layer_embed, std=0.02)
|
||||
|
||||
model_kwargs = dict(
|
||||
input_dim=layer_embeding + task_embedding,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dim=layer_embeding * 4,
|
||||
act_cls="sigmoid",
|
||||
norm_cls="identity",
|
||||
)
|
||||
self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
self._return_container = return_container
|
||||
print("generator: {:}".format(self._generator))
|
||||
|
||||
def forward_raw(self, task_embed):
|
||||
task_embed = task_embed.view(1, -1).expand(self._num_layers, -1)
|
||||
joint_embed = torch.cat((task_embed, self._super_layer_embed), dim=-1)
|
||||
weights = self._generator(joint_embed)
|
||||
if self._return_container:
|
||||
weights = torch.split(weights, 1)
|
||||
return self._shape_container.translate(weights)
|
||||
else:
|
||||
return weights
|
||||
|
||||
def forward_candidate(self, input):
|
||||
raise NotImplementedError
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape))
|
||||
|
||||
|
||||
class HyperNet_VX(super_core.SuperModule):
|
||||
def __init__(self, shape_container, input_embeding, return_container=True):
|
||||
super(HyperNet_VX, self).__init__()
|
||||
self._shape_container = shape_container
|
||||
self._num_layers = len(shape_container)
|
||||
self._numel_per_layer = []
|
||||
for ilayer in range(self._num_layers):
|
||||
self._numel_per_layer.append(shape_container[ilayer].numel())
|
||||
|
||||
self.register_parameter(
|
||||
"_super_layer_embed",
|
||||
torch.nn.Parameter(torch.Tensor(self._num_layers, input_embeding)),
|
||||
)
|
||||
trunc_normal_(self._super_layer_embed, std=0.02)
|
||||
|
||||
model_kwargs = dict(
|
||||
input_dim=input_embeding,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dim=input_embeding * 4,
|
||||
act_cls="sigmoid",
|
||||
norm_cls="identity",
|
||||
)
|
||||
self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
self._return_container = return_container
|
||||
print("generator: {:}".format(self._generator))
|
||||
|
||||
def forward_raw(self, input):
|
||||
weights = self._generator(self._super_layer_embed)
|
||||
if self._return_container:
|
||||
weights = torch.split(weights, 1)
|
||||
return self._shape_container.translate(weights)
|
||||
else:
|
||||
return weights
|
||||
|
||||
def forward_candidate(self, input):
|
||||
raise NotImplementedError
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape))
|
Reference in New Issue
Block a user