Update SuperViT

This commit is contained in:
D-X-Y
2021-06-09 05:39:35 -07:00
parent 0ddc5c0dc4
commit d4546cfe3f
4 changed files with 119 additions and 69 deletions

View File

@@ -3,7 +3,7 @@
#####################################################
# Vision Transformer: arxiv.org/pdf/2010.11929.pdf #
#####################################################
import math
import copy, math
from functools import partial
from typing import Optional, Text, List
@@ -35,42 +35,69 @@ def _init_weights(m):
name2config = {
"vit-base": dict(
"vit-cifar10-p4-d4-h4-c32": dict(
type="vit",
image_size=256,
image_size=32,
patch_size=4,
num_classes=10,
dim=32,
depth=4,
heads=4,
dropout=0.1,
att_dropout=0.0,
),
"vit-base-16": dict(
type="vit",
image_size=224,
patch_size=16,
num_classes=1000,
dim=768,
depth=12,
heads=12,
dropout=0.1,
emb_dropout=0.1,
att_dropout=0.0,
),
"vit-large": dict(
"vit-large-16": dict(
type="vit",
image_size=256,
image_size=224,
patch_size=16,
num_classes=1000,
dim=1024,
depth=24,
heads=16,
dropout=0.1,
emb_dropout=0.1,
att_dropout=0.0,
),
"vit-huge": dict(
"vit-huge-14": dict(
type="vit",
image_size=256,
patch_size=16,
image_size=224,
patch_size=14,
num_classes=1000,
dim=1280,
depth=32,
heads=16,
dropout=0.1,
emb_dropout=0.1,
att_dropout=0.0,
),
}
def extend_cifar100(configs):
new_configs = dict()
for name, config in configs.items():
new_configs[name] = config
if "cifar10" in name and "cifar100" not in name:
config = copy.deepcopy(config)
config["num_classes"] = 100
a, b = name.split("cifar10")
new_name = "{:}cifar100{:}".format(a, b)
new_configs[new_name] = config
return new_configs
name2config = extend_cifar100(name2config)
class SuperViT(xlayers.SuperModule):
"""The super model for transformer."""
@@ -85,7 +112,7 @@ class SuperViT(xlayers.SuperModule):
mlp_multiplier=4,
channels=3,
dropout=0.0,
emb_dropout=0.0,
att_dropout=0.0,
):
super(SuperViT, self).__init__()
image_height, image_width = pair(image_size)
@@ -107,14 +134,19 @@ class SuperViT(xlayers.SuperModule):
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.dropout = nn.Dropout(dropout)
# build the transformer encode layers
layers = []
for ilayer in range(depth):
layers.append(
xlayers.SuperTransformerEncoderLayer(
dim, heads, False, mlp_multiplier, dropout
dim,
heads,
False,
mlp_multiplier,
dropout=dropout,
att_dropout=att_dropout,
)
)
self.backbone = xlayers.SuperSequential(*layers)
@@ -167,7 +199,7 @@ def get_transformer(config):
depth=config.get("depth"),
heads=config.get("heads"),
dropout=config.get("dropout"),
emb_dropout=config.get("emb_dropout"),
att_dropout=config.get("att_dropout"),
)
else:
raise ValueError("Unknown model type: {:}".format(model_type))