Update SuperViT

This commit is contained in:
D-X-Y
2021-06-09 05:39:35 -07:00
parent 0ddc5c0dc4
commit d4546cfe3f
4 changed files with 119 additions and 69 deletions

View File

@@ -10,20 +10,31 @@ import torch
from xautodl.xmodels import transformers
from xautodl.utils.flop_benchmark import count_parameters
class TestSuperViT(unittest.TestCase):
"""Test the super re-arrange layer."""
def test_super_vit(self):
model = transformers.get_transformer("vit-base")
tensor = torch.rand((16, 3, 256, 256))
model = transformers.get_transformer("vit-base-16")
tensor = torch.rand((16, 3, 224, 224))
print("The tensor shape: {:}".format(tensor.shape))
print(model)
# print(model)
outs = model(tensor)
print("The output tensor shape: {:}".format(outs.shape))
def test_model_size(self):
def test_imagenet(self):
name2config = transformers.name2config
print("There are {:} models in total.".format(len(name2config)))
for name, config in name2config.items():
if "cifar" in name:
tensor = torch.rand((16, 3, 32, 32))
else:
tensor = torch.rand((16, 3, 224, 224))
model = transformers.get_transformer(config)
outs = model(tensor)
size = count_parameters(model, "mb", True)
print('{:10s} : size={:.2f}MB'.format(name, size))
print(
"{:10s} : size={:.2f}MB, out-shape: {:}".format(
name, size, tuple(outs.shape)
)
)