Add save/load_best for xlayers
This commit is contained in:
@@ -36,7 +36,7 @@ def main(args):
|
||||
model = get_model(**model_kwargs)
|
||||
criterion = torch.nn.MSELoss()
|
||||
|
||||
logger.log("There are {:} weights.".format(model.get_w_container().numel()))
|
||||
logger.log("There are {:} weights.".format(model.numel()))
|
||||
|
||||
shape_container = model.get_w_container().to_shape_container()
|
||||
hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim)
|
||||
|
@@ -1,8 +1,8 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 500000 --init_lr 0.01
|
||||
# python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 500000 --init_lr 0.01 --device cuda
|
||||
# python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 16 --epochs 20000 --init_lr 0.01
|
||||
# python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 16 --epochs 10000 --init_lr 0.01 --device cuda
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
@@ -39,7 +39,8 @@ def main(args):
|
||||
criterion = torch.nn.MSELoss()
|
||||
|
||||
shape_container = model.get_w_container().to_shape_container()
|
||||
hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim)
|
||||
total_bar = 100
|
||||
hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, total_bar)
|
||||
hypernet = hypernet.to(args.device)
|
||||
|
||||
logger.log(
|
||||
@@ -52,14 +53,6 @@ def main(args):
|
||||
time_string(), hypernet.numel()
|
||||
)
|
||||
)
|
||||
# task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim))
|
||||
total_bar = 100
|
||||
task_embeds = []
|
||||
for i in range(total_bar):
|
||||
tensor = torch.Tensor(1, args.task_dim).to(args.device)
|
||||
task_embeds.append(torch.nn.Parameter(tensor))
|
||||
for task_embed in task_embeds:
|
||||
trunc_normal_(task_embed, std=0.02)
|
||||
for i in range(total_bar):
|
||||
env_info["{:}-x".format(i)] = env_info["{:}-x".format(i)].to(args.device)
|
||||
env_info["{:}-y".format(i)] = env_info["{:}-y".format(i)].to(args.device)
|
||||
@@ -67,9 +60,9 @@ def main(args):
|
||||
model.train()
|
||||
hypernet.train()
|
||||
|
||||
parameters = list(hypernet.parameters()) + task_embeds
|
||||
# optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True)
|
||||
optimizer = torch.optim.Adam(parameters, lr=args.init_lr, weight_decay=1e-5)
|
||||
optimizer = torch.optim.Adam(
|
||||
hypernet.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True
|
||||
)
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
@@ -97,10 +90,10 @@ def main(args):
|
||||
# for ibatch in range(args.meta_batch):
|
||||
for cur_time in range(total_bar):
|
||||
# cur_time = random.randint(0, total_bar)
|
||||
cur_task_embed = task_embeds[cur_time]
|
||||
cur_container = hypernet(cur_task_embed)
|
||||
cur_x = env_info["{:}-x".format(cur_time)].to(args.device)
|
||||
cur_y = env_info["{:}-y".format(cur_time)].to(args.device)
|
||||
# cur_task_embed = task_embeds[cur_time]
|
||||
cur_container = hypernet(cur_time)
|
||||
cur_x = env_info["{:}-x".format(cur_time)]
|
||||
cur_y = env_info["{:}-y".format(cur_time)]
|
||||
cur_dataset = TimeData(cur_time, cur_x, cur_y)
|
||||
|
||||
preds = model.forward_with_container(cur_dataset.x, cur_container)
|
||||
@@ -126,10 +119,14 @@ def main(args):
|
||||
)
|
||||
)
|
||||
|
||||
success, best_score = hypernet.save_best(-loss_meter.avg)
|
||||
if success:
|
||||
logger.log(
|
||||
"Achieve the best with best_score = {:.3f}".format(best_score)
|
||||
)
|
||||
save_checkpoint(
|
||||
{
|
||||
"hypernet": hypernet.state_dict(),
|
||||
"task_embed": task_embed,
|
||||
"lr_scheduler": lr_scheduler.state_dict(),
|
||||
"iepoch": iepoch,
|
||||
},
|
||||
@@ -142,13 +139,15 @@ def main(args):
|
||||
|
||||
print(model)
|
||||
print(hypernet)
|
||||
hypernet.load_best()
|
||||
|
||||
w_container_per_epoch = dict()
|
||||
for idx in range(0, total_bar):
|
||||
future_time = env_info["{:}-timestamp".format(idx)]
|
||||
future_x = env_info["{:}-x".format(idx)]
|
||||
future_y = env_info["{:}-y".format(idx)]
|
||||
future_container = hypernet(task_embeds[idx])
|
||||
# future_container = hypernet(task_embeds[idx])
|
||||
future_container = hypernet(idx)
|
||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
||||
with torch.no_grad():
|
||||
future_y_hat = model.forward_with_container(
|
||||
|
@@ -15,7 +15,12 @@ class HyperNet(super_core.SuperModule):
|
||||
"""The hyper-network."""
|
||||
|
||||
def __init__(
|
||||
self, shape_container, layer_embeding, task_embedding, return_container=True
|
||||
self,
|
||||
shape_container,
|
||||
layer_embeding,
|
||||
task_embedding,
|
||||
num_tasks,
|
||||
return_container=True,
|
||||
):
|
||||
super(HyperNet, self).__init__()
|
||||
self._shape_container = shape_container
|
||||
@@ -28,36 +33,33 @@ class HyperNet(super_core.SuperModule):
|
||||
"_super_layer_embed",
|
||||
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)),
|
||||
)
|
||||
self.register_parameter(
|
||||
"_super_task_embed",
|
||||
torch.nn.Parameter(torch.Tensor(num_tasks, task_embedding)),
|
||||
)
|
||||
trunc_normal_(self._super_layer_embed, std=0.02)
|
||||
trunc_normal_(self._super_task_embed, std=0.02)
|
||||
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="dual_norm_mlp"),
|
||||
input_dim=layer_embeding + task_embedding,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dims=[layer_embeding * 2] * 3,
|
||||
hidden_dims=[(layer_embeding + task_embedding) * 2] * 3,
|
||||
act_cls="gelu",
|
||||
norm_cls="layer_norm_1d",
|
||||
dropout=0.1,
|
||||
dropout=0.2,
|
||||
)
|
||||
self._generator = get_model(**model_kwargs)
|
||||
"""
|
||||
model_kwargs = dict(
|
||||
input_dim=layer_embeding + task_embedding,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dim=layer_embeding * 4,
|
||||
act_cls="sigmoid",
|
||||
norm_cls="identity",
|
||||
)
|
||||
self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
"""
|
||||
self._return_container = return_container
|
||||
print("generator: {:}".format(self._generator))
|
||||
|
||||
def forward_raw(self, task_embed):
|
||||
# task_embed = F.normalize(task_embed, dim=-1, p=2)
|
||||
# layer_embed = F.normalize(self._super_layer_embed, dim=-1, p=2)
|
||||
def forward_raw(self, task_embed_id):
|
||||
layer_embed = self._super_layer_embed
|
||||
task_embed = task_embed.view(1, -1).expand(self._num_layers, -1)
|
||||
task_embed = (
|
||||
self._super_task_embed[task_embed_id]
|
||||
.view(1, -1)
|
||||
.expand(self._num_layers, -1)
|
||||
)
|
||||
|
||||
joint_embed = torch.cat((task_embed, layer_embed), dim=-1)
|
||||
weights = self._generator(joint_embed)
|
||||
|
Reference in New Issue
Block a user