Add more algorithms

This commit is contained in:
D-X-Y
2019-09-28 18:24:47 +10:00
parent bfd6b648fd
commit cfb462e463
286 changed files with 10557 additions and 122955 deletions

159
exps/KD-main.py Normal file
View File

@@ -0,0 +1,159 @@
import sys, time, torch, random, argparse
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, obtain_cls_kd_args as obtain_args
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from procedures import get_optim_scheduler, get_procedures
from datasets import get_datasets
from models import obtain_model, load_net_from_checkpoint
from utils import get_model_infos
from log_utils import AverageMeter, time_string, convert_secs2time
def main(args):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
#torch.backends.cudnn.deterministic = True
torch.set_num_threads( args.workers )
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(args.dataset, args.data_path, args.cutout_length)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True , num_workers=args.workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
# get configures
model_config = load_config(args.model_config, {'class_num': class_num}, logger)
optim_config = load_config(args.optim_config,
{'class_num': class_num, 'KD_alpha': args.KD_alpha, 'KD_temperature': args.KD_temperature},
logger)
# load checkpoint
teacher_base = load_net_from_checkpoint(args.KD_checkpoint)
teacher = torch.nn.DataParallel(teacher_base).cuda()
base_model = obtain_model(model_config)
flop, param = get_model_infos(base_model, xshape)
logger.log('Student ====>>>>:\n{:}'.format(base_model))
logger.log('Teacher ====>>>>:\n{:}'.format(teacher_base))
logger.log('model information : {:}'.format(base_model.get_message()))
logger.log('-'*50)
logger.log('Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G'.format(param, flop, flop/1e3))
logger.log('-'*50)
logger.log('train_data : {:}'.format(train_data))
logger.log('valid_data : {:}'.format(valid_data))
optimizer, scheduler, criterion = get_optim_scheduler(base_model.parameters(), optim_config)
logger.log('optimizer : {:}'.format(optimizer))
logger.log('scheduler : {:}'.format(scheduler))
logger.log('criterion : {:}'.format(criterion))
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
network, criterion = torch.nn.DataParallel(base_model).cuda(), criterion.cuda()
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
last_info = torch.load(last_info)
start_epoch = last_info['epoch'] + 1
checkpoint = torch.load(last_info['last_checkpoint'])
base_model.load_state_dict( checkpoint['base-model'] )
scheduler.load_state_dict ( checkpoint['scheduler'] )
optimizer.load_state_dict ( checkpoint['optimizer'] )
valid_accuracies = checkpoint['valid_accuracies']
max_bytes = checkpoint['max_bytes']
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
elif args.resume is not None:
assert Path(args.resume).exists(), 'Can not find the resume file : {:}'.format(args.resume)
checkpoint = torch.load( args.resume )
start_epoch = checkpoint['epoch'] + 1
base_model.load_state_dict( checkpoint['base-model'] )
scheduler.load_state_dict ( checkpoint['scheduler'] )
optimizer.load_state_dict ( checkpoint['optimizer'] )
valid_accuracies = checkpoint['valid_accuracies']
max_bytes = checkpoint['max_bytes']
logger.log("=> loading checkpoint from '{:}' start with {:}-th epoch.".format(args.resume, start_epoch))
elif args.init_model is not None:
assert Path(args.init_model).exists(), 'Can not find the initialization file : {:}'.format(args.init_model)
checkpoint = torch.load( args.init_model )
base_model.load_state_dict( checkpoint['base-model'] )
start_epoch, valid_accuracies, max_bytes = 0, {'best': -1}, {}
logger.log('=> initialize the model from {:}'.format( args.init_model ))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, max_bytes = 0, {'best': -1}, {}
train_func, valid_func = get_procedures(args.procedure)
total_epoch = optim_config.epochs + optim_config.warmup
# Main Training and Evaluation Loop
start_time = time.time()
epoch_time = AverageMeter()
for epoch in range(start_epoch, total_epoch):
scheduler.update(epoch, 0.0)
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (total_epoch-epoch), True) )
epoch_str = 'epoch={:03d}/{:03d}'.format(epoch, total_epoch)
LRs = scheduler.get_lr()
find_best = False
logger.log('\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}'.format(time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler))
# train for one epoch
train_loss, train_acc1, train_acc5 = train_func(train_loader, teacher, network, criterion, scheduler, optimizer, optim_config, epoch_str, args.print_freq, logger)
# log the results
logger.log('***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}'.format(time_string(), epoch_str, train_loss, train_acc1, train_acc5))
# evaluate the performance
if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
logger.log('-'*150)
valid_loss, valid_acc1, valid_acc5 = valid_func(valid_loader, teacher, network, criterion, optim_config, epoch_str, args.print_freq_eval, logger)
valid_accuracies[epoch] = valid_acc1
logger.log('***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}'.format(time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies['best'], 100-valid_accuracies['best']))
if valid_acc1 > valid_accuracies['best']:
valid_accuracies['best'] = valid_acc1
find_best = True
logger.log('Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.'.format(epoch, valid_acc1, valid_acc5, 100-valid_acc1, 100-valid_acc5, model_best_path))
num_bytes = torch.cuda.max_memory_cached( next(network.parameters()).device ) * 1.0
logger.log('[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]'.format(next(network.parameters()).device, int(num_bytes), num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9))
max_bytes[epoch] = num_bytes
if epoch % 10 == 0: torch.cuda.empty_cache()
# save checkpoint
save_path = save_checkpoint({
'epoch' : epoch,
'args' : deepcopy(args),
'max_bytes' : deepcopy(max_bytes),
'FLOP' : flop,
'PARAM' : param,
'valid_accuracies': deepcopy(valid_accuracies),
'model-config' : model_config._asdict(),
'optim-config' : optim_config._asdict(),
'base-model' : base_model.state_dict(),
'scheduler' : scheduler.state_dict(),
'optimizer' : optimizer.state_dict(),
}, model_base_path, logger)
if find_best: copy_checkpoint(model_base_path, model_best_path, logger)
last_info = save_checkpoint({
'epoch': epoch,
'args' : deepcopy(args),
'last_checkpoint': save_path,
}, logger.path('info'), logger)
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log('\n' + '-'*200)
logger.log('||| Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G'.format(param, flop, flop/1e3))
logger.log('Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}'.format(convert_secs2time(epoch_time.sum, True), max(v for k, v in max_bytes.items()) / 1e6, logger.path('info')))
logger.log('-'*200 + '\n')
logger.close()
if __name__ == '__main__':
args = obtain_args()
main(args)

68
exps/basic-eval.py Normal file
View File

@@ -0,0 +1,68 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import os, sys, time, torch, random, argparse
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config
from procedures import get_procedures, get_optim_scheduler
from datasets import get_datasets
from models import obtain_model
from utils import get_model_infos
from log_utils import PrintLogger, time_string
assert torch.cuda.is_available(), 'torch.cuda is not available'
def main(args):
assert os.path.isdir ( args.data_path ) , 'invalid data-path : {:}'.format(args.data_path)
assert os.path.isfile( args.checkpoint ), 'invalid checkpoint : {:}'.format(args.checkpoint)
checkpoint = torch.load( args.checkpoint )
xargs = checkpoint['args']
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, args.data_path, xargs.cutout_length)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=xargs.batch_size, shuffle=False, num_workers=xargs.workers, pin_memory=True)
logger = PrintLogger()
model_config = dict2config(checkpoint['model-config'], logger)
base_model = obtain_model(model_config)
flop, param = get_model_infos(base_model, xshape)
logger.log('model ====>>>>:\n{:}'.format(base_model))
logger.log('model information : {:}'.format(base_model.get_message()))
logger.log('-'*50)
logger.log('Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G'.format(param, flop, flop/1e3))
logger.log('-'*50)
logger.log('valid_data : {:}'.format(valid_data))
optim_config = dict2config(checkpoint['optim-config'], logger)
_, _, criterion = get_optim_scheduler(base_model.parameters(), optim_config)
logger.log('criterion : {:}'.format(criterion))
base_model.load_state_dict( checkpoint['base-model'] )
_, valid_func = get_procedures(xargs.procedure)
logger.log('initialize the CNN done, evaluate it using {:}'.format(valid_func))
network = torch.nn.DataParallel(base_model).cuda()
try:
valid_loss, valid_acc1, valid_acc5 = valid_func(valid_loader, network, criterion, optim_config, 'pure-evaluation', xargs.print_freq_eval, logger)
except:
_, valid_func = get_procedures('basic')
valid_loss, valid_acc1, valid_acc5 = valid_func(valid_loader, network, criterion, optim_config, 'pure-evaluation', xargs.print_freq_eval, logger)
num_bytes = torch.cuda.max_memory_cached( next(network.parameters()).device ) * 1.0
logger.log('***{:s}*** EVALUATION loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f}, error@1 = {:.2f}, error@5 = {:.2f}'.format(time_string(), valid_loss, valid_acc1, valid_acc5, 100-valid_acc1, 100-valid_acc5))
logger.log('[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]'.format(next(network.parameters()).device, int(num_bytes), num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9))
logger.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser("Evaluate-CNN")
parser.add_argument('--data_path', type=str, help='Path to dataset.')
parser.add_argument('--checkpoint', type=str, help='Choose between Cifar10/100 and ImageNet.')
args = parser.parse_args()
main(args)

165
exps/basic-main.py Normal file
View File

@@ -0,0 +1,165 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import sys, time, torch, random, argparse
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, obtain_basic_args as obtain_args
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from procedures import get_optim_scheduler, get_procedures
from datasets import get_datasets
from models import obtain_model
from nas_infer_model import obtain_nas_infer_model
from utils import get_model_infos
from log_utils import AverageMeter, time_string, convert_secs2time
def main(args):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
#torch.backends.cudnn.deterministic = True
torch.set_num_threads( args.workers )
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(args.dataset, args.data_path, args.cutout_length)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True , num_workers=args.workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
# get configures
model_config = load_config(args.model_config, {'class_num': class_num}, logger)
optim_config = load_config(args.optim_config, {'class_num': class_num}, logger)
if args.model_source == 'normal':
base_model = obtain_model(model_config)
elif args.model_source == 'nas':
base_model = obtain_nas_infer_model(model_config)
else:
raise ValueError('invalid model-source : {:}'.format(args.model_source))
flop, param = get_model_infos(base_model, xshape)
logger.log('model ====>>>>:\n{:}'.format(base_model))
logger.log('model information : {:}'.format(base_model.get_message()))
logger.log('-'*50)
logger.log('Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G'.format(param, flop, flop/1e3))
logger.log('-'*50)
logger.log('train_data : {:}'.format(train_data))
logger.log('valid_data : {:}'.format(valid_data))
optimizer, scheduler, criterion = get_optim_scheduler(base_model.parameters(), optim_config)
logger.log('optimizer : {:}'.format(optimizer))
logger.log('scheduler : {:}'.format(scheduler))
logger.log('criterion : {:}'.format(criterion))
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
network, criterion = torch.nn.DataParallel(base_model).cuda(), criterion.cuda()
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
last_infox = torch.load(last_info)
start_epoch = last_infox['epoch'] + 1
last_checkpoint_path = last_infox['last_checkpoint']
if not last_checkpoint_path.exists():
logger.log('Does not find {:}, try another path'.format(last_checkpoint_path))
last_checkpoint_path = last_info.parent / last_checkpoint_path.parent.name / last_checkpoint_path.name
checkpoint = torch.load( last_checkpoint_path )
base_model.load_state_dict( checkpoint['base-model'] )
scheduler.load_state_dict ( checkpoint['scheduler'] )
optimizer.load_state_dict ( checkpoint['optimizer'] )
valid_accuracies = checkpoint['valid_accuracies']
max_bytes = checkpoint['max_bytes']
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
elif args.resume is not None:
assert Path(args.resume).exists(), 'Can not find the resume file : {:}'.format(args.resume)
checkpoint = torch.load( args.resume )
start_epoch = checkpoint['epoch'] + 1
base_model.load_state_dict( checkpoint['base-model'] )
scheduler.load_state_dict ( checkpoint['scheduler'] )
optimizer.load_state_dict ( checkpoint['optimizer'] )
valid_accuracies = checkpoint['valid_accuracies']
max_bytes = checkpoint['max_bytes']
logger.log("=> loading checkpoint from '{:}' start with {:}-th epoch.".format(args.resume, start_epoch))
elif args.init_model is not None:
assert Path(args.init_model).exists(), 'Can not find the initialization file : {:}'.format(args.init_model)
checkpoint = torch.load( args.init_model )
base_model.load_state_dict( checkpoint['base-model'] )
start_epoch, valid_accuracies, max_bytes = 0, {'best': -1}, {}
logger.log('=> initialize the model from {:}'.format( args.init_model ))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, max_bytes = 0, {'best': -1}, {}
train_func, valid_func = get_procedures(args.procedure)
total_epoch = optim_config.epochs + optim_config.warmup
# Main Training and Evaluation Loop
start_time = time.time()
epoch_time = AverageMeter()
for epoch in range(start_epoch, total_epoch):
scheduler.update(epoch, 0.0)
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (total_epoch-epoch), True) )
epoch_str = 'epoch={:03d}/{:03d}'.format(epoch, total_epoch)
LRs = scheduler.get_lr()
find_best = False
# set-up drop-out ratio
if hasattr(base_model, 'update_drop_path'): base_model.update_drop_path(model_config.drop_path_prob * epoch / total_epoch)
logger.log('\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}'.format(time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler))
# train for one epoch
train_loss, train_acc1, train_acc5 = train_func(train_loader, network, criterion, scheduler, optimizer, optim_config, epoch_str, args.print_freq, logger)
# log the results
logger.log('***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}'.format(time_string(), epoch_str, train_loss, train_acc1, train_acc5))
# evaluate the performance
if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
logger.log('-'*150)
valid_loss, valid_acc1, valid_acc5 = valid_func(valid_loader, network, criterion, optim_config, epoch_str, args.print_freq_eval, logger)
valid_accuracies[epoch] = valid_acc1
logger.log('***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}'.format(time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies['best'], 100-valid_accuracies['best']))
if valid_acc1 > valid_accuracies['best']:
valid_accuracies['best'] = valid_acc1
find_best = True
logger.log('Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.'.format(epoch, valid_acc1, valid_acc5, 100-valid_acc1, 100-valid_acc5, model_best_path))
num_bytes = torch.cuda.max_memory_cached( next(network.parameters()).device ) * 1.0
logger.log('[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]'.format(next(network.parameters()).device, int(num_bytes), num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9))
max_bytes[epoch] = num_bytes
if epoch % 10 == 0: torch.cuda.empty_cache()
# save checkpoint
save_path = save_checkpoint({
'epoch' : epoch,
'args' : deepcopy(args),
'max_bytes' : deepcopy(max_bytes),
'FLOP' : flop,
'PARAM' : param,
'valid_accuracies': deepcopy(valid_accuracies),
'model-config' : model_config._asdict(),
'optim-config' : optim_config._asdict(),
'base-model' : base_model.state_dict(),
'scheduler' : scheduler.state_dict(),
'optimizer' : optimizer.state_dict(),
}, model_base_path, logger)
if find_best: copy_checkpoint(model_base_path, model_best_path, logger)
last_info = save_checkpoint({
'epoch': epoch,
'args' : deepcopy(args),
'last_checkpoint': save_path,
}, logger.path('info'), logger)
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log('\n' + '-'*200)
logger.log('Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}'.format(convert_secs2time(epoch_time.sum, True), max(v for k, v in max_bytes.items()) / 1e6, logger.path('info')))
logger.log('-'*200 + '\n')
logger.close()
if __name__ == '__main__':
args = obtain_args()
main(args)

78
exps/compare.py Normal file
View File

@@ -0,0 +1,78 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
# python exps/compare.py --checkpoints basic.pth order.pth --names basic order --save ./output/vis/basic-vs-order.pdf
import sys, time, torch, random, argparse
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from pathlib import Path
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
parser = argparse.ArgumentParser(description='Visualize the checkpoint and compare', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--checkpoints', type=str, nargs='+', help='checkpoint paths.')
parser.add_argument('--names', type=str, nargs='+', help='names.')
parser.add_argument('--save', type=str, help='the save path.')
args = parser.parse_args()
def visualize_acc(epochs, accuracies, names, save_path):
LabelSize = 24
LegendFontsize = 22
matplotlib.rcParams['xtick.labelsize'] = LabelSize
matplotlib.rcParams['ytick.labelsize'] = LabelSize
color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k']
dpi = 300
width, height = 3400, 3600
figsize = width / float(dpi), height / float(dpi)
fig = plt.figure(figsize=figsize)
plt.xlim(0, max(epochs))
plt.ylim(0, 100)
interval_x, interval_y = 20, 10
plt.xticks(np.arange(0, max(epochs) + interval_x, interval_x), fontsize=LegendFontsize)
plt.yticks(np.arange(0, 100 + interval_y, interval_y), fontsize=LegendFontsize)
plt.grid()
plt.xlabel('epoch', fontsize=16)
plt.ylabel('accuracy (%)', fontsize=16)
for idx, tag in enumerate(names):
xaccs = [accuracies[idx][x] for x in epochs]
plt.plot(epochs, xaccs, color=color_set[idx], linestyle='-', label='Test Accuracy : {:}'.format(tag), lw=3)
plt.legend(loc=4, fontsize=LegendFontsize)
if save_path is not None:
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf')
print ('---- save figure into {:}.'.format(save_path))
plt.close(fig)
def main():
checkpoints, names = args.checkpoints, args.names
assert len(checkpoints) == len(names), 'invalid length : {:} vs {:}'.format(len(checkpoints), len(names))
for i, checkpoint in enumerate(checkpoints):
assert Path(checkpoint).exists(), 'The {:}-th checkpoint : {:} does not exist'.format( checkpoint )
save_path = Path(args.save)
save_dir = save_path.parent
save_dir.mkdir(parents=True, exist_ok=True)
accuracies = []
for checkpoint in checkpoints:
checkpoint = torch.load( checkpoint )
accuracies.append( checkpoint['valid_accuracies'] )
epochs = [x for x in accuracies[0].keys() if isinstance(x, int)]
epochs = sorted( epochs )
visualize_acc(epochs, accuracies, names, save_path)
if __name__ == '__main__':
main()

77
exps/prepare.py Normal file
View File

@@ -0,0 +1,77 @@
# python exps/prepare.py --name cifar10 --root $TORCH_HOME/cifar.python --save ./data/cifar10.split.pth
# python exps/prepare.py --name cifar100 --root $TORCH_HOME/cifar.python --save ./data/cifar100.split.pth
# python exps/prepare.py --name imagenet-1k --root $TORCH_HOME/ILSVRC2012 --save ./data/imagenet-1k.split.pth
import sys, time, torch, random, argparse
from collections import defaultdict
import os.path as osp
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from pathlib import Path
import torchvision
import torchvision.datasets as dset
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
parser = argparse.ArgumentParser(description='Prepare splits for searching', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--name' , type=str, help='The dataset name.')
parser.add_argument('--root' , type=str, help='The directory to the dataset.')
parser.add_argument('--save' , type=str, help='The save path.')
parser.add_argument('--ratio', type=float, help='The save path.')
args = parser.parse_args()
def main():
save_path = Path(args.save)
save_dir = save_path.parent
name = args.name
save_dir.mkdir(parents=True, exist_ok=True)
assert not save_path.exists(), '{:} already exists'.format(save_path)
print ('torchvision version : {:}'.format(torchvision.__version__))
if name == 'cifar10':
dataset = dset.CIFAR10 (args.root, train=True)
elif name == 'cifar100':
dataset = dset.CIFAR100(args.root, train=True)
elif name == 'imagenet-1k':
dataset = dset.ImageFolder(osp.join(args.root, 'train'))
else: raise TypeError("Unknow dataset : {:}".format(name))
if hasattr(dataset, 'targets'):
targets = dataset.targets
elif hasattr(dataset, 'train_labels'):
targets = dataset.train_labels
elif hasattr(dataset, 'imgs'):
targets = [x[1] for x in dataset.imgs]
else:
raise ValueError('invalid pattern')
print ('There are {:} samples in this dataset.'.format( len(targets) ))
class2index = defaultdict(list)
train, valid = [], []
random.seed(111)
for index, cls in enumerate(targets):
class2index[cls].append( index )
classes = sorted( list(class2index.keys()) )
for cls in classes:
xlist = class2index[cls]
xtrain = random.sample(xlist, int(len(xlist)*args.ratio))
xvalid = list(set(xlist) - set(xtrain))
train += xtrain
valid += xvalid
train.sort()
valid.sort()
## for statistics
class2numT, class2numV = defaultdict(int), defaultdict(int)
for index in train:
class2numT[ targets[index] ] += 1
for index in valid:
class2numV[ targets[index] ] += 1
class2numT, class2numV = dict(class2numT), dict(class2numV)
torch.save({'train': train,
'valid': valid,
'class2numTrain': class2numT,
'class2numValid': class2numV}, save_path)
print ('-'*80)
if __name__ == '__main__':
main()

201
exps/search-shape.py Normal file
View File

@@ -0,0 +1,201 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import sys, time, torch, random, argparse
from PIL import ImageFile
from os import path as osp
ImageFile.LOAD_TRUNCATED_IMAGES = True
import numpy as np
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, configure2str, obtain_search_single_args as obtain_args
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from procedures import get_optim_scheduler, get_procedures
from datasets import get_datasets, SearchDataset
from models import obtain_search_model, obtain_model, change_key
from utils import get_model_infos
from log_utils import AverageMeter, time_string, convert_secs2time
def main(args):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
#torch.backends.cudnn.deterministic = True
torch.set_num_threads( args.workers )
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
# prepare dataset
train_data, valid_data, xshape, class_num = get_datasets(args.dataset, args.data_path, args.cutout_length)
#train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True , num_workers=args.workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
split_file_path = Path(args.split_path)
assert split_file_path.exists(), '{:} does not exist'.format(split_file_path)
split_info = torch.load(split_file_path)
train_split, valid_split = split_info['train'], split_info['valid']
assert len( set(train_split).intersection( set(valid_split) ) ) == 0, 'There should be 0 element that belongs to both train and valid'
assert len(train_split) + len(valid_split) == len(train_data), '{:} + {:} vs {:}'.format(len(train_split), len(valid_split), len(train_data))
search_dataset = SearchDataset(args.dataset, train_data, train_split, valid_split)
search_train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), pin_memory=True, num_workers=args.workers)
search_valid_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), pin_memory=True, num_workers=args.workers)
search_loader = torch.utils.data.DataLoader(search_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, sampler=None)
# get configures
model_config = load_config(args.model_config, {'class_num': class_num, 'search_mode': args.search_shape}, logger)
# obtain the model
search_model = obtain_search_model(model_config)
MAX_FLOP, param = get_model_infos(search_model, xshape)
optim_config = load_config(args.optim_config, {'class_num': class_num, 'FLOP': MAX_FLOP}, logger)
logger.log('Model Information : {:}'.format(search_model.get_message()))
logger.log('MAX_FLOP = {:} M'.format(MAX_FLOP))
logger.log('Params = {:} M'.format(param))
logger.log('train_data : {:}'.format(train_data))
logger.log('search-data: {:}'.format(search_dataset))
logger.log('search_train_loader : {:} samples'.format( len(train_split) ))
logger.log('search_valid_loader : {:} samples'.format( len(valid_split) ))
base_optimizer, scheduler, criterion = get_optim_scheduler(search_model.base_parameters(), optim_config)
arch_optimizer = torch.optim.Adam(search_model.arch_parameters(), lr=optim_config.arch_LR, betas=(0.5, 0.999), weight_decay=optim_config.arch_decay)
logger.log('base-optimizer : {:}'.format(base_optimizer))
logger.log('arch-optimizer : {:}'.format(arch_optimizer))
logger.log('scheduler : {:}'.format(scheduler))
logger.log('criterion : {:}'.format(criterion))
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
# load checkpoint
if last_info.exists() or (args.resume is not None and osp.isfile(args.resume)): # automatically resume from previous checkpoint
if args.resume is not None and osp.isfile(args.resume):
resume_path = Path(args.resume)
elif last_info.exists():
resume_path = last_info
else: raise ValueError('Something is wrong.')
logger.log("=> loading checkpoint of the last-info '{:}' start".format(resume_path))
checkpoint = torch.load(resume_path)
if 'last_checkpoint' in checkpoint:
last_checkpoint_path = checkpoint['last_checkpoint']
if not last_checkpoint_path.exists():
logger.log('Does not find {:}, try another path'.format(last_checkpoint_path))
last_checkpoint_path = resume_path.parent / last_checkpoint_path.parent.name / last_checkpoint_path.name
assert last_checkpoint_path.exists(), 'can not find the checkpoint from {:}'.format(last_checkpoint_path)
checkpoint = torch.load( last_checkpoint_path )
start_epoch = checkpoint['epoch'] + 1
search_model.load_state_dict( checkpoint['search_model'] )
scheduler.load_state_dict ( checkpoint['scheduler'] )
base_optimizer.load_state_dict ( checkpoint['base_optimizer'] )
arch_optimizer.load_state_dict ( checkpoint['arch_optimizer'] )
valid_accuracies = checkpoint['valid_accuracies']
arch_genotypes = checkpoint['arch_genotypes']
discrepancies = checkpoint['discrepancies']
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(resume_path, start_epoch))
else:
logger.log("=> do not find the last-info file : {:} or resume : {:}".format(last_info, args.resume))
start_epoch, valid_accuracies, arch_genotypes, discrepancies = 0, {'best': -1}, {}, {}
# main procedure
train_func, valid_func = get_procedures(args.procedure)
total_epoch = optim_config.epochs + optim_config.warmup
start_time, epoch_time = time.time(), AverageMeter()
for epoch in range(start_epoch, total_epoch):
scheduler.update(epoch, 0.0)
search_model.set_tau(args.gumbel_tau_max, args.gumbel_tau_min, epoch*1.0/total_epoch)
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (total_epoch-epoch), True) )
epoch_str = 'epoch={:03d}/{:03d}'.format(epoch, total_epoch)
LRs = scheduler.get_lr()
find_best = False
logger.log('\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}, tau={:}, FLOP={:.2f}'.format(time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler, search_model.tau, MAX_FLOP))
# train for one epoch
train_base_loss, train_arch_loss, train_acc1, train_acc5 = train_func(search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, \
{'epoch-str' : epoch_str, 'FLOP-exp': MAX_FLOP * args.FLOP_ratio,
'FLOP-weight': args.FLOP_weight, 'FLOP-tolerant': MAX_FLOP * args.FLOP_tolerant}, args.print_freq, logger)
# log the results
logger.log('***{:s}*** TRAIN [{:}] base-loss = {:.6f}, arch-loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}'.format(time_string(), epoch_str, train_base_loss, train_arch_loss, train_acc1, train_acc5))
cur_FLOP, genotype = search_model.get_flop('genotype', model_config._asdict(), None)
arch_genotypes[epoch] = genotype
arch_genotypes['last'] = genotype
logger.log('[{:}] genotype : {:}'.format(epoch_str, genotype))
arch_info, discrepancy = search_model.get_arch_info()
logger.log(arch_info)
discrepancies[epoch] = discrepancy
logger.log('[{:}] FLOP : {:.2f} MB, ratio : {:.4f}, Expected-ratio : {:.4f}, Discrepancy : {:.3f}'.format(epoch_str, cur_FLOP, cur_FLOP/MAX_FLOP, args.FLOP_ratio, np.mean(discrepancy)))
#if cur_FLOP/MAX_FLOP > args.FLOP_ratio:
# init_flop_weight = init_flop_weight * args.FLOP_decay
#else:
# init_flop_weight = init_flop_weight / args.FLOP_decay
# evaluate the performance
if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
logger.log('-'*150)
valid_loss, valid_acc1, valid_acc5 = valid_func(search_valid_loader, network, criterion, epoch_str, args.print_freq_eval, logger)
valid_accuracies[epoch] = valid_acc1
logger.log('***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}'.format(time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies['best'], 100-valid_accuracies['best']))
if valid_acc1 > valid_accuracies['best']:
valid_accuracies['best'] = valid_acc1
arch_genotypes['best'] = genotype
find_best = True
logger.log('Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.'.format(epoch, valid_acc1, valid_acc5, 100-valid_acc1, 100-valid_acc5, model_best_path))
# save checkpoint
save_path = save_checkpoint({
'epoch' : epoch,
'args' : deepcopy(args),
'valid_accuracies': deepcopy(valid_accuracies),
'model-config' : model_config._asdict(),
'optim-config' : optim_config._asdict(),
'search_model' : search_model.state_dict(),
'scheduler' : scheduler.state_dict(),
'base_optimizer': base_optimizer.state_dict(),
'arch_optimizer': arch_optimizer.state_dict(),
'arch_genotypes': arch_genotypes,
'discrepancies' : discrepancies,
}, model_base_path, logger)
if find_best: copy_checkpoint(model_base_path, model_best_path, logger)
last_info = save_checkpoint({
'epoch': epoch,
'args' : deepcopy(args),
'last_checkpoint': save_path,
}, logger.path('info'), logger)
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log('')
logger.log('-'*100)
last_config_path = logger.path('log') / 'seed-{:}-last.config'.format(args.rand_seed)
configure2str(arch_genotypes['last'], str(last_config_path))
logger.log('save the last config int {:} :\n{:}'.format(last_config_path, arch_genotypes['last']))
best_arch, valid_acc = arch_genotypes['best'], valid_accuracies['best']
for key, config in arch_genotypes.items():
if key == 'last': continue
FLOP_ratio = config['estimated_FLOP'] / MAX_FLOP
if abs(FLOP_ratio - args.FLOP_ratio) <= args.FLOP_tolerant:
if valid_acc < valid_accuracies[key]:
best_arch, valid_acc = config, valid_accuracies[key]
print('Best-Arch : {:}\nRatio={:}, Valid-ACC={:}'.format(best_arch, best_arch['estimated_FLOP'] / MAX_FLOP, valid_acc))
best_config_path = logger.path('log') / 'seed-{:}-best.config'.format(args.rand_seed)
configure2str(best_arch, str(best_config_path))
logger.log('save the last config int {:} :\n{:}'.format(best_config_path, best_arch))
logger.log('\n' + '-'*200)
logger.log('Finish training/validation in {:}, and save final checkpoint into {:}'.format(convert_secs2time(epoch_time.sum, True), logger.path('info')))
logger.close()
if __name__ == '__main__':
args = obtain_args()
main(args)

View File

@@ -0,0 +1,215 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import sys, time, torch, random, argparse
from PIL import ImageFile
from os import path as osp
ImageFile.LOAD_TRUNCATED_IMAGES = True
import numpy as np
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, configure2str, obtain_search_args as obtain_args
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from procedures import get_optim_scheduler, get_procedures
from datasets import get_datasets, SearchDataset
from models import obtain_search_model, obtain_model, change_key
from utils import get_model_infos
from log_utils import AverageMeter, time_string, convert_secs2time
def main(args):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
#torch.backends.cudnn.deterministic = True
torch.set_num_threads( args.workers )
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
# prepare dataset
train_data, valid_data, xshape, class_num = get_datasets(args.dataset, args.data_path, args.cutout_length)
#train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True , num_workers=args.workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
split_file_path = Path(args.split_path)
assert split_file_path.exists(), '{:} does not exist'.format(split_file_path)
split_info = torch.load(split_file_path)
train_split, valid_split = split_info['train'], split_info['valid']
assert len( set(train_split).intersection( set(valid_split) ) ) == 0, 'There should be 0 element that belongs to both train and valid'
assert len(train_split) + len(valid_split) == len(train_data), '{:} + {:} vs {:}'.format(len(train_split), len(valid_split), len(train_data))
search_dataset = SearchDataset(args.dataset, train_data, train_split, valid_split)
search_train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), pin_memory=True, num_workers=args.workers)
search_valid_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), pin_memory=True, num_workers=args.workers)
search_loader = torch.utils.data.DataLoader(search_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, sampler=None)
# get configures
if args.ablation_num_select is None or args.ablation_num_select <= 0:
model_config = load_config(args.model_config, {'class_num': class_num, 'search_mode': 'shape'}, logger)
else:
model_config = load_config(args.model_config, {'class_num': class_num, 'search_mode': 'ablation', 'num_random_select': args.ablation_num_select}, logger)
# obtain the model
search_model = obtain_search_model(model_config)
MAX_FLOP, param = get_model_infos(search_model, xshape)
optim_config = load_config(args.optim_config, {'class_num': class_num, 'FLOP': MAX_FLOP}, logger)
logger.log('Model Information : {:}'.format(search_model.get_message()))
logger.log('MAX_FLOP = {:} M'.format(MAX_FLOP))
logger.log('Params = {:} M'.format(param))
logger.log('train_data : {:}'.format(train_data))
logger.log('search-data: {:}'.format(search_dataset))
logger.log('search_train_loader : {:} samples'.format( len(train_split) ))
logger.log('search_valid_loader : {:} samples'.format( len(valid_split) ))
base_optimizer, scheduler, criterion = get_optim_scheduler(search_model.base_parameters(), optim_config)
arch_optimizer = torch.optim.Adam(search_model.arch_parameters(optim_config.arch_LR), lr=optim_config.arch_LR, betas=(0.5, 0.999), weight_decay=optim_config.arch_decay)
logger.log('base-optimizer : {:}'.format(base_optimizer))
logger.log('arch-optimizer : {:}'.format(arch_optimizer))
logger.log('scheduler : {:}'.format(scheduler))
logger.log('criterion : {:}'.format(criterion))
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
# load checkpoint
if last_info.exists() or (args.resume is not None and osp.isfile(args.resume)): # automatically resume from previous checkpoint
if args.resume is not None and osp.isfile(args.resume):
resume_path = Path(args.resume)
elif last_info.exists():
resume_path = last_info
else: raise ValueError('Something is wrong.')
logger.log("=> loading checkpoint of the last-info '{:}' start".format(resume_path))
checkpoint = torch.load(resume_path)
if 'last_checkpoint' in checkpoint:
last_checkpoint_path = checkpoint['last_checkpoint']
if not last_checkpoint_path.exists():
logger.log('Does not find {:}, try another path'.format(last_checkpoint_path))
last_checkpoint_path = resume_path.parent / last_checkpoint_path.parent.name / last_checkpoint_path.name
assert last_checkpoint_path.exists(), 'can not find the checkpoint from {:}'.format(last_checkpoint_path)
checkpoint = torch.load( last_checkpoint_path )
start_epoch = checkpoint['epoch'] + 1
#for key, value in checkpoint['search_model'].items():
# print('K {:} = Shape={:}'.format(key, value.shape))
search_model.load_state_dict( checkpoint['search_model'] )
scheduler.load_state_dict ( checkpoint['scheduler'] )
base_optimizer.load_state_dict ( checkpoint['base_optimizer'] )
arch_optimizer.load_state_dict ( checkpoint['arch_optimizer'] )
valid_accuracies = checkpoint['valid_accuracies']
arch_genotypes = checkpoint['arch_genotypes']
discrepancies = checkpoint['discrepancies']
max_bytes = checkpoint['max_bytes']
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(resume_path, start_epoch))
else:
logger.log("=> do not find the last-info file : {:} or resume : {:}".format(last_info, args.resume))
start_epoch, valid_accuracies, arch_genotypes, discrepancies, max_bytes = 0, {'best': -1}, {}, {}, {}
# main procedure
train_func, valid_func = get_procedures(args.procedure)
total_epoch = optim_config.epochs + optim_config.warmup
start_time, epoch_time = time.time(), AverageMeter()
for epoch in range(start_epoch, total_epoch):
scheduler.update(epoch, 0.0)
search_model.set_tau(args.gumbel_tau_max, args.gumbel_tau_min, epoch*1.0/total_epoch)
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (total_epoch-epoch), True) )
epoch_str = 'epoch={:03d}/{:03d}'.format(epoch, total_epoch)
LRs = scheduler.get_lr()
find_best = False
logger.log('\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}, tau={:}, FLOP={:.2f}'.format(time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler, search_model.tau, MAX_FLOP))
# train for one epoch
train_base_loss, train_arch_loss, train_acc1, train_acc5 = train_func(search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, \
{'epoch-str' : epoch_str, 'FLOP-exp': MAX_FLOP * args.FLOP_ratio,
'FLOP-weight': args.FLOP_weight, 'FLOP-tolerant': MAX_FLOP * args.FLOP_tolerant}, args.print_freq, logger)
# log the results
logger.log('***{:s}*** TRAIN [{:}] base-loss = {:.6f}, arch-loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}'.format(time_string(), epoch_str, train_base_loss, train_arch_loss, train_acc1, train_acc5))
cur_FLOP, genotype = search_model.get_flop('genotype', model_config._asdict(), None)
arch_genotypes[epoch] = genotype
arch_genotypes['last'] = genotype
logger.log('[{:}] genotype : {:}'.format(epoch_str, genotype))
# save the configuration
configure2str(genotype, str( logger.path('log') / 'seed-{:}-temp.config'.format(args.rand_seed) ))
arch_info, discrepancy = search_model.get_arch_info()
logger.log(arch_info)
discrepancies[epoch] = discrepancy
logger.log('[{:}] FLOP : {:.2f} MB, ratio : {:.4f}, Expected-ratio : {:.4f}, Discrepancy : {:.3f}'.format(epoch_str, cur_FLOP, cur_FLOP/MAX_FLOP, args.FLOP_ratio, np.mean(discrepancy)))
#if cur_FLOP/MAX_FLOP > args.FLOP_ratio:
# init_flop_weight = init_flop_weight * args.FLOP_decay
#else:
# init_flop_weight = init_flop_weight / args.FLOP_decay
# evaluate the performance
if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
logger.log('-'*150)
valid_loss, valid_acc1, valid_acc5 = valid_func(search_valid_loader, network, criterion, epoch_str, args.print_freq_eval, logger)
valid_accuracies[epoch] = valid_acc1
logger.log('***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}'.format(time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies['best'], 100-valid_accuracies['best']))
if valid_acc1 > valid_accuracies['best']:
valid_accuracies['best'] = valid_acc1
arch_genotypes['best'] = genotype
find_best = True
logger.log('Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.'.format(epoch, valid_acc1, valid_acc5, 100-valid_acc1, 100-valid_acc5, model_best_path))
# log the GPU memory usage
#num_bytes = torch.cuda.max_memory_allocated( next(network.parameters()).device ) * 1.0
num_bytes = torch.cuda.max_memory_cached( next(network.parameters()).device ) * 1.0
logger.log('[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]'.format(next(network.parameters()).device, int(num_bytes), num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9))
max_bytes[epoch] = num_bytes
# save checkpoint
save_path = save_checkpoint({
'epoch' : epoch,
'args' : deepcopy(args),
'max_bytes' : deepcopy(max_bytes),
'valid_accuracies': deepcopy(valid_accuracies),
'model-config' : model_config._asdict(),
'optim-config' : optim_config._asdict(),
'search_model' : search_model.state_dict(),
'scheduler' : scheduler.state_dict(),
'base_optimizer': base_optimizer.state_dict(),
'arch_optimizer': arch_optimizer.state_dict(),
'arch_genotypes': arch_genotypes,
'discrepancies' : discrepancies,
}, model_base_path, logger)
if find_best: copy_checkpoint(model_base_path, model_best_path, logger)
last_info = save_checkpoint({
'epoch': epoch,
'args' : deepcopy(args),
'last_checkpoint': save_path,
}, logger.path('info'), logger)
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log('')
logger.log('-'*100)
last_config_path = logger.path('log') / 'seed-{:}-last.config'.format(args.rand_seed)
configure2str(arch_genotypes['last'], str(last_config_path))
logger.log('save the last config int {:} :\n{:}'.format(last_config_path, arch_genotypes['last']))
best_arch, valid_acc = arch_genotypes['best'], valid_accuracies['best']
for key, config in arch_genotypes.items():
if key == 'last': continue
FLOP_ratio = config['estimated_FLOP'] / MAX_FLOP
if abs(FLOP_ratio - args.FLOP_ratio) <= args.FLOP_tolerant:
if valid_acc <= valid_accuracies[key]:
best_arch, valid_acc = config, valid_accuracies[key]
print('Best-Arch : {:}\nRatio={:}, Valid-ACC={:}'.format(best_arch, best_arch['estimated_FLOP'] / MAX_FLOP, valid_acc))
best_config_path = logger.path('log') / 'seed-{:}-best.config'.format(args.rand_seed)
configure2str(best_arch, str(best_config_path))
logger.log('save the last config int {:} :\n{:}'.format(best_config_path, best_arch))
logger.log('\n' + '-'*200)
logger.log('Finish training/validation in {:} with Max-GPU-Memory of {:.2f} GB, and save final checkpoint into {:}'.format(convert_secs2time(epoch_time.sum, True), max(v for k, v in max_bytes.items()) / 1e9, logger.path('info')))
logger.close()
if __name__ == '__main__':
args = obtain_args()
main(args)