Update LFNA version 1.0
This commit is contained in:
@@ -1,120 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
# DISABLED / NOT-FINISHED
|
||||
#####################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import math
|
||||
from typing import Optional, Callable
|
||||
|
||||
import spaces
|
||||
from .super_container import SuperSequential
|
||||
from .super_linear import SuperLinear
|
||||
|
||||
|
||||
class SuperActor(SuperModule):
|
||||
"""A Actor in RL."""
|
||||
|
||||
def _distribution(self, obs):
|
||||
raise NotImplementedError
|
||||
|
||||
def _log_prob_from_distribution(self, pi, act):
|
||||
raise NotImplementedError
|
||||
|
||||
def forward_candidate(self, **kwargs):
|
||||
return self.forward_raw(**kwargs)
|
||||
|
||||
def forward_raw(self, obs, act=None):
|
||||
# Produce action distributions for given observations, and
|
||||
# optionally compute the log likelihood of given actions under
|
||||
# those distributions.
|
||||
pi = self._distribution(obs)
|
||||
logp_a = None
|
||||
if act is not None:
|
||||
logp_a = self._log_prob_from_distribution(pi, act)
|
||||
return pi, logp_a
|
||||
|
||||
|
||||
class SuperLfnaMetaMLP(SuperModule):
|
||||
def __init__(self, obs_dim, hidden_sizes, act_cls):
|
||||
super(SuperLfnaMetaMLP).__init__()
|
||||
self.delta_net = SuperSequential(
|
||||
SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[1], 1),
|
||||
)
|
||||
|
||||
|
||||
class SuperLfnaMetaMLP(SuperModule):
|
||||
def __init__(self, obs_dim, act_dim, hidden_sizes, act_cls):
|
||||
super(SuperLfnaMetaMLP).__init__()
|
||||
log_std = -0.5 * np.ones(act_dim, dtype=np.float32)
|
||||
self.log_std = torch.nn.Parameter(torch.as_tensor(log_std))
|
||||
self.mu_net = SuperSequential(
|
||||
SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[1], act_dim),
|
||||
)
|
||||
|
||||
def _distribution(self, obs):
|
||||
mu = self.mu_net(obs)
|
||||
std = torch.exp(self.log_std)
|
||||
return Normal(mu, std)
|
||||
|
||||
def _log_prob_from_distribution(self, pi, act):
|
||||
return pi.log_prob(act).sum(axis=-1)
|
||||
|
||||
def forward_candidate(self, **kwargs):
|
||||
return self.forward_raw(**kwargs)
|
||||
|
||||
def forward_raw(self, obs, act=None):
|
||||
# Produce action distributions for given observations, and
|
||||
# optionally compute the log likelihood of given actions under
|
||||
# those distributions.
|
||||
pi = self._distribution(obs)
|
||||
logp_a = None
|
||||
if act is not None:
|
||||
logp_a = self._log_prob_from_distribution(pi, act)
|
||||
return pi, logp_a
|
||||
|
||||
|
||||
class SuperMLPGaussianActor(SuperModule):
|
||||
def __init__(self, obs_dim, act_dim, hidden_sizes, act_cls):
|
||||
super(SuperMLPGaussianActor).__init__()
|
||||
log_std = -0.5 * np.ones(act_dim, dtype=np.float32)
|
||||
self.log_std = torch.nn.Parameter(torch.as_tensor(log_std))
|
||||
self.mu_net = SuperSequential(
|
||||
SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[1], act_dim),
|
||||
)
|
||||
|
||||
def _distribution(self, obs):
|
||||
mu = self.mu_net(obs)
|
||||
std = torch.exp(self.log_std)
|
||||
return Normal(mu, std)
|
||||
|
||||
def _log_prob_from_distribution(self, pi, act):
|
||||
return pi.log_prob(act).sum(axis=-1)
|
||||
|
||||
def forward_candidate(self, **kwargs):
|
||||
return self.forward_raw(**kwargs)
|
||||
|
||||
def forward_raw(self, obs, act=None):
|
||||
# Produce action distributions for given observations, and
|
||||
# optionally compute the log likelihood of given actions under
|
||||
# those distributions.
|
||||
pi = self._distribution(obs)
|
||||
logp_a = None
|
||||
if act is not None:
|
||||
logp_a = self._log_prob_from_distribution(pi, act)
|
||||
return pi, logp_a
|
@@ -42,6 +42,7 @@ class SuperTransformerEncoderLayer(SuperModule):
|
||||
qkv_bias: BoolSpaceType = False,
|
||||
mlp_hidden_multiplier: IntSpaceType = 4,
|
||||
drop: Optional[float] = None,
|
||||
norm_affine: bool = True,
|
||||
act_layer: Callable[[], nn.Module] = nn.GELU,
|
||||
order: LayerOrder = LayerOrder.PreNorm,
|
||||
):
|
||||
@@ -62,19 +63,19 @@ class SuperTransformerEncoderLayer(SuperModule):
|
||||
drop=drop,
|
||||
)
|
||||
if order is LayerOrder.PreNorm:
|
||||
self.norm1 = SuperLayerNorm1D(d_model)
|
||||
self.norm1 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
|
||||
self.mha = mha
|
||||
self.drop1 = nn.Dropout(drop or 0.0)
|
||||
self.norm2 = SuperLayerNorm1D(d_model)
|
||||
self.norm2 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
|
||||
self.mlp = mlp
|
||||
self.drop2 = nn.Dropout(drop or 0.0)
|
||||
elif order is LayerOrder.PostNorm:
|
||||
self.mha = mha
|
||||
self.drop1 = nn.Dropout(drop or 0.0)
|
||||
self.norm1 = SuperLayerNorm1D(d_model)
|
||||
self.norm1 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
|
||||
self.mlp = mlp
|
||||
self.drop2 = nn.Dropout(drop or 0.0)
|
||||
self.norm2 = SuperLayerNorm1D(d_model)
|
||||
self.norm2 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
|
||||
else:
|
||||
raise ValueError("Unknown order: {:}".format(order))
|
||||
self._order = order
|
||||
|
@@ -60,4 +60,7 @@ def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
|
||||
>>> w = torch.empty(3, 5)
|
||||
>>> nn.init.trunc_normal_(w)
|
||||
"""
|
||||
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
||||
if isinstance(tensor, list):
|
||||
return [_no_grad_trunc_normal_(x, mean, std, a, b) for x in tensor]
|
||||
else:
|
||||
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
||||
|
Reference in New Issue
Block a user