Update LFNA version 1.0
This commit is contained in:
@@ -2,6 +2,7 @@
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.05 #
|
||||
#####################################################
|
||||
from .synthetic_utils import TimeStamp
|
||||
from .synthetic_env import EnvSampler
|
||||
from .synthetic_env import SyntheticDEnv
|
||||
from .math_core import LinearFunc
|
||||
from .math_core import DynamicLinearFunc
|
||||
|
@@ -2,7 +2,7 @@
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
import math
|
||||
import abc
|
||||
import random
|
||||
import numpy as np
|
||||
from typing import List, Optional, Dict
|
||||
import torch
|
||||
@@ -11,6 +11,28 @@ import torch.utils.data as data
|
||||
from .synthetic_utils import TimeStamp
|
||||
|
||||
|
||||
def is_list_tuple(x):
|
||||
return isinstance(x, (tuple, list))
|
||||
|
||||
|
||||
def zip_sequence(sequence):
|
||||
def _combine(*alist):
|
||||
if is_list_tuple(alist[0]):
|
||||
return [_combine(*xlist) for xlist in zip(*alist)]
|
||||
else:
|
||||
return torch.cat(alist, dim=0)
|
||||
|
||||
def unsqueeze(a):
|
||||
if is_list_tuple(a):
|
||||
return [unsqueeze(x) for x in a]
|
||||
else:
|
||||
return a.unsqueeze(dim=0)
|
||||
|
||||
with torch.no_grad():
|
||||
sequence = [unsqueeze(a) for a in sequence]
|
||||
return _combine(*sequence)
|
||||
|
||||
|
||||
class SyntheticDEnv(data.Dataset):
|
||||
"""The synethtic dynamic environment."""
|
||||
|
||||
@@ -33,7 +55,7 @@ class SyntheticDEnv(data.Dataset):
|
||||
self._num_per_task = num_per_task
|
||||
if timestamp_config is None:
|
||||
timestamp_config = dict(mode=mode)
|
||||
else:
|
||||
elif "mode" not in timestamp_config:
|
||||
timestamp_config["mode"] = mode
|
||||
|
||||
self._timestamp_generator = TimeStamp(**timestamp_config)
|
||||
@@ -42,6 +64,7 @@ class SyntheticDEnv(data.Dataset):
|
||||
self._cov_functors = cov_functors
|
||||
|
||||
self._oracle_map = None
|
||||
self._seq_length = None
|
||||
|
||||
@property
|
||||
def min_timestamp(self):
|
||||
@@ -55,9 +78,18 @@ class SyntheticDEnv(data.Dataset):
|
||||
def timestamp_interval(self):
|
||||
return self._timestamp_generator.interval
|
||||
|
||||
def reset_max_seq_length(self, seq_length):
|
||||
self._seq_length = seq_length
|
||||
|
||||
def get_timestamp(self, index):
|
||||
index, timestamp = self._timestamp_generator[index]
|
||||
return timestamp
|
||||
if index is None:
|
||||
timestamps = []
|
||||
for index in range(len(self._timestamp_generator)):
|
||||
timestamps.append(self._timestamp_generator[index][1])
|
||||
return tuple(timestamps)
|
||||
else:
|
||||
index, timestamp = self._timestamp_generator[index]
|
||||
return timestamp
|
||||
|
||||
def set_oracle_map(self, functor):
|
||||
self._oracle_map = functor
|
||||
@@ -75,7 +107,14 @@ class SyntheticDEnv(data.Dataset):
|
||||
def __getitem__(self, index):
|
||||
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
|
||||
index, timestamp = self._timestamp_generator[index]
|
||||
return self.__call__(timestamp)
|
||||
if self._seq_length is None:
|
||||
return self.__call__(timestamp)
|
||||
else:
|
||||
timestamps = [
|
||||
timestamp + i * self.timestamp_interval for i in range(self._seq_length)
|
||||
]
|
||||
xdata = [self.__call__(timestamp) for timestamp in timestamps]
|
||||
return zip_sequence(xdata)
|
||||
|
||||
def __call__(self, timestamp):
|
||||
mean_list = [functor(timestamp) for functor in self._mean_functors]
|
||||
@@ -88,10 +127,13 @@ class SyntheticDEnv(data.Dataset):
|
||||
mean_list, cov_matrix, size=self._num_per_task
|
||||
)
|
||||
if self._oracle_map is None:
|
||||
return timestamp, torch.Tensor(dataset)
|
||||
return torch.Tensor([timestamp]), torch.Tensor(dataset)
|
||||
else:
|
||||
targets = self._oracle_map.noise_call(dataset, timestamp)
|
||||
return timestamp, (torch.Tensor(dataset), torch.Tensor(targets))
|
||||
return torch.Tensor([timestamp]), (
|
||||
torch.Tensor(dataset),
|
||||
torch.Tensor(targets),
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self._timestamp_generator)
|
||||
@@ -104,3 +146,20 @@ class SyntheticDEnv(data.Dataset):
|
||||
ndim=self._ndim,
|
||||
num_per_task=self._num_per_task,
|
||||
)
|
||||
|
||||
|
||||
class EnvSampler:
|
||||
def __init__(self, env, batch, enlarge):
|
||||
indexes = list(range(len(env)))
|
||||
self._indexes = indexes * enlarge
|
||||
self._batch = batch
|
||||
self._iterations = len(self._indexes) // self._batch
|
||||
|
||||
def __iter__(self):
|
||||
random.shuffle(self._indexes)
|
||||
for it in range(self._iterations):
|
||||
indexes = self._indexes[it * self._batch : (it + 1) * self._batch]
|
||||
yield indexes
|
||||
|
||||
def __len__(self):
|
||||
return self._iterations
|
||||
|
@@ -30,6 +30,7 @@ class UnifiedSplit:
|
||||
self._indexes = all_indexes[num_of_train + num_of_valid :]
|
||||
else:
|
||||
raise ValueError("Unkonwn mode of {:}".format(mode))
|
||||
self._all_indexes = all_indexes
|
||||
self._mode = mode
|
||||
|
||||
@property
|
||||
|
@@ -1,120 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
# DISABLED / NOT-FINISHED
|
||||
#####################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import math
|
||||
from typing import Optional, Callable
|
||||
|
||||
import spaces
|
||||
from .super_container import SuperSequential
|
||||
from .super_linear import SuperLinear
|
||||
|
||||
|
||||
class SuperActor(SuperModule):
|
||||
"""A Actor in RL."""
|
||||
|
||||
def _distribution(self, obs):
|
||||
raise NotImplementedError
|
||||
|
||||
def _log_prob_from_distribution(self, pi, act):
|
||||
raise NotImplementedError
|
||||
|
||||
def forward_candidate(self, **kwargs):
|
||||
return self.forward_raw(**kwargs)
|
||||
|
||||
def forward_raw(self, obs, act=None):
|
||||
# Produce action distributions for given observations, and
|
||||
# optionally compute the log likelihood of given actions under
|
||||
# those distributions.
|
||||
pi = self._distribution(obs)
|
||||
logp_a = None
|
||||
if act is not None:
|
||||
logp_a = self._log_prob_from_distribution(pi, act)
|
||||
return pi, logp_a
|
||||
|
||||
|
||||
class SuperLfnaMetaMLP(SuperModule):
|
||||
def __init__(self, obs_dim, hidden_sizes, act_cls):
|
||||
super(SuperLfnaMetaMLP).__init__()
|
||||
self.delta_net = SuperSequential(
|
||||
SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[1], 1),
|
||||
)
|
||||
|
||||
|
||||
class SuperLfnaMetaMLP(SuperModule):
|
||||
def __init__(self, obs_dim, act_dim, hidden_sizes, act_cls):
|
||||
super(SuperLfnaMetaMLP).__init__()
|
||||
log_std = -0.5 * np.ones(act_dim, dtype=np.float32)
|
||||
self.log_std = torch.nn.Parameter(torch.as_tensor(log_std))
|
||||
self.mu_net = SuperSequential(
|
||||
SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[1], act_dim),
|
||||
)
|
||||
|
||||
def _distribution(self, obs):
|
||||
mu = self.mu_net(obs)
|
||||
std = torch.exp(self.log_std)
|
||||
return Normal(mu, std)
|
||||
|
||||
def _log_prob_from_distribution(self, pi, act):
|
||||
return pi.log_prob(act).sum(axis=-1)
|
||||
|
||||
def forward_candidate(self, **kwargs):
|
||||
return self.forward_raw(**kwargs)
|
||||
|
||||
def forward_raw(self, obs, act=None):
|
||||
# Produce action distributions for given observations, and
|
||||
# optionally compute the log likelihood of given actions under
|
||||
# those distributions.
|
||||
pi = self._distribution(obs)
|
||||
logp_a = None
|
||||
if act is not None:
|
||||
logp_a = self._log_prob_from_distribution(pi, act)
|
||||
return pi, logp_a
|
||||
|
||||
|
||||
class SuperMLPGaussianActor(SuperModule):
|
||||
def __init__(self, obs_dim, act_dim, hidden_sizes, act_cls):
|
||||
super(SuperMLPGaussianActor).__init__()
|
||||
log_std = -0.5 * np.ones(act_dim, dtype=np.float32)
|
||||
self.log_std = torch.nn.Parameter(torch.as_tensor(log_std))
|
||||
self.mu_net = SuperSequential(
|
||||
SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[1], act_dim),
|
||||
)
|
||||
|
||||
def _distribution(self, obs):
|
||||
mu = self.mu_net(obs)
|
||||
std = torch.exp(self.log_std)
|
||||
return Normal(mu, std)
|
||||
|
||||
def _log_prob_from_distribution(self, pi, act):
|
||||
return pi.log_prob(act).sum(axis=-1)
|
||||
|
||||
def forward_candidate(self, **kwargs):
|
||||
return self.forward_raw(**kwargs)
|
||||
|
||||
def forward_raw(self, obs, act=None):
|
||||
# Produce action distributions for given observations, and
|
||||
# optionally compute the log likelihood of given actions under
|
||||
# those distributions.
|
||||
pi = self._distribution(obs)
|
||||
logp_a = None
|
||||
if act is not None:
|
||||
logp_a = self._log_prob_from_distribution(pi, act)
|
||||
return pi, logp_a
|
@@ -42,6 +42,7 @@ class SuperTransformerEncoderLayer(SuperModule):
|
||||
qkv_bias: BoolSpaceType = False,
|
||||
mlp_hidden_multiplier: IntSpaceType = 4,
|
||||
drop: Optional[float] = None,
|
||||
norm_affine: bool = True,
|
||||
act_layer: Callable[[], nn.Module] = nn.GELU,
|
||||
order: LayerOrder = LayerOrder.PreNorm,
|
||||
):
|
||||
@@ -62,19 +63,19 @@ class SuperTransformerEncoderLayer(SuperModule):
|
||||
drop=drop,
|
||||
)
|
||||
if order is LayerOrder.PreNorm:
|
||||
self.norm1 = SuperLayerNorm1D(d_model)
|
||||
self.norm1 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
|
||||
self.mha = mha
|
||||
self.drop1 = nn.Dropout(drop or 0.0)
|
||||
self.norm2 = SuperLayerNorm1D(d_model)
|
||||
self.norm2 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
|
||||
self.mlp = mlp
|
||||
self.drop2 = nn.Dropout(drop or 0.0)
|
||||
elif order is LayerOrder.PostNorm:
|
||||
self.mha = mha
|
||||
self.drop1 = nn.Dropout(drop or 0.0)
|
||||
self.norm1 = SuperLayerNorm1D(d_model)
|
||||
self.norm1 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
|
||||
self.mlp = mlp
|
||||
self.drop2 = nn.Dropout(drop or 0.0)
|
||||
self.norm2 = SuperLayerNorm1D(d_model)
|
||||
self.norm2 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
|
||||
else:
|
||||
raise ValueError("Unknown order: {:}".format(order))
|
||||
self._order = order
|
||||
|
@@ -60,4 +60,7 @@ def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
|
||||
>>> w = torch.empty(3, 5)
|
||||
>>> nn.init.trunc_normal_(w)
|
||||
"""
|
||||
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
||||
if isinstance(tensor, list):
|
||||
return [_no_grad_trunc_normal_(x, mean, std, a, b) for x in tensor]
|
||||
else:
|
||||
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
||||
|
Reference in New Issue
Block a user