Update LFNA version 1.0

This commit is contained in:
D-X-Y
2021-05-13 21:33:34 +08:00
parent 3d3a04705f
commit cfabd05de8
11 changed files with 340 additions and 299 deletions

View File

@@ -1,7 +1,7 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
# python exps/LFNA/lfna.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 50000
# python exps/LFNA/lfna.py --env_version v1
#####################################################
import sys, time, copy, torch, random, argparse
from tqdm import tqdm
@@ -19,56 +19,82 @@ from utils import split_str2indexes
from procedures.advanced_main import basic_train_fn, basic_eval_fn
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from datasets.synthetic_core import get_synthetic_env
from datasets.synthetic_core import get_synthetic_env, EnvSampler
from models.xcore import get_model
from xlayers import super_core, trunc_normal_
from lfna_utils import lfna_setup, train_model, TimeData
from lfna_meta_model import LFNA_Meta
from lfna_models_v2 import HyperNet
def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger):
base_model.train()
meta_model.train()
loss_meter = AverageMeter()
for ibatch, batch_data in enumerate(loader):
timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data
timestamps = timestamps.squeeze(dim=-1).to(device)
batch_seq_inputs = batch_seq_inputs.to(device)
batch_seq_targets = batch_seq_targets.to(device)
optimizer.zero_grad()
batch_seq_containers = meta_model(timestamps)
losses = []
for seq_containers, seq_inputs, seq_targets in zip(
batch_seq_containers, batch_seq_inputs, batch_seq_targets
):
for container, inputs, targets in zip(
seq_containers, seq_inputs, seq_targets
):
predictions = base_model.forward_with_container(inputs, container)
loss = criterion(predictions, targets)
losses.append(loss)
final_loss = torch.stack(losses).mean()
final_loss.backward()
optimizer.step()
loss_meter.update(final_loss.item())
return loss_meter
def main(args):
logger, env_info, model_kwargs = lfna_setup(args)
dynamic_env = env_info["dynamic_env"]
model = get_model(**model_kwargs)
model = model.to(args.device)
dynamic_env = get_synthetic_env(mode="train", version=args.env_version)
base_model = get_model(**model_kwargs)
base_model = base_model.to(args.device)
criterion = torch.nn.MSELoss()
logger.log("There are {:} weights.".format(model.get_w_container().numel()))
# meta_train_range = (dynamic_env.min_timestamp, (dynamic_env.min_timestamp + dynamic_env.max_timestamp) / 2)
# meta_train_interval = dynamic_env.timestamp_interval
shape_container = model.get_w_container().to_shape_container()
shape_container = base_model.get_w_container().to_shape_container()
# pre-train the hypernetwork
timestamps = list(
dynamic_env.get_timestamp(index) for index in range(len(dynamic_env) // 2)
timestamps = dynamic_env.get_timestamp(None)
meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps)
meta_model = meta_model.to(args.device)
logger.log("The base-model has {:} weights.".format(base_model.numel()))
logger.log("The meta-model has {:} weights.".format(meta_model.numel()))
batch_sampler = EnvSampler(dynamic_env, args.meta_batch, args.sampler_enlarge)
dynamic_env.reset_max_seq_length(args.seq_length)
"""
env_loader = torch.utils.data.DataLoader(
dynamic_env,
batch_size=args.meta_batch,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
)
"""
env_loader = torch.utils.data.DataLoader(
dynamic_env,
batch_sampler=batch_sampler,
num_workers=args.workers,
pin_memory=True,
)
hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, timestamps)
hypernet = hypernet.to(args.device)
import pdb
pdb.set_trace()
# task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim))
total_bar = 16
task_embeds = []
for i in range(total_bar):
tensor = torch.Tensor(1, args.task_dim).to(args.device)
task_embeds.append(torch.nn.Parameter(tensor))
for task_embed in task_embeds:
trunc_normal_(task_embed, std=0.02)
model.train()
hypernet.train()
parameters = list(hypernet.parameters()) + task_embeds
# optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True)
optimizer = torch.optim.Adam(parameters, lr=args.init_lr, weight_decay=1e-5)
optimizer = torch.optim.Adam(
meta_model.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True
)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
@@ -77,71 +103,59 @@ def main(args):
],
gamma=0.1,
)
logger.log("The base-model is\n{:}".format(base_model))
logger.log("The meta-model is\n{:}".format(meta_model))
logger.log("The optimizer is\n{:}".format(optimizer))
logger.log("Per epoch iterations = {:}".format(len(env_loader)))
# total_bar = env_info["total"] - 1
# LFNA meta-training
loss_meter = AverageMeter()
per_epoch_time, start_time = AverageMeter(), time.time()
last_success_epoch = 0
for iepoch in range(args.epochs):
need_time = "Time Left: {:}".format(
head_str = "[{:}] [{:04d}/{:04d}] ".format(
time_string(), iepoch, args.epochs
) + "Time Left: {:}".format(
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
)
head_str = (
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
+ need_time
loss_meter = epoch_train(
env_loader,
meta_model,
base_model,
optimizer,
criterion,
args.device,
logger,
)
losses = []
# for ibatch in range(args.meta_batch):
for cur_time in range(total_bar):
# cur_time = random.randint(0, total_bar)
cur_task_embed = task_embeds[cur_time]
cur_container = hypernet(cur_task_embed)
cur_x = env_info["{:}-x".format(cur_time)].to(args.device)
cur_y = env_info["{:}-y".format(cur_time)].to(args.device)
cur_dataset = TimeData(cur_time, cur_x, cur_y)
preds = model.forward_with_container(cur_dataset.x, cur_container)
optimizer.zero_grad()
loss = criterion(preds, cur_dataset.y)
losses.append(loss)
final_loss = torch.stack(losses).mean()
final_loss.backward()
optimizer.step()
lr_scheduler.step()
loss_meter.update(final_loss.item())
if iepoch % 100 == 0:
logger.log(
head_str
+ " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format(
loss_meter.avg,
loss_meter.val,
min(lr_scheduler.get_last_lr()),
len(losses),
)
)
logger.log(
head_str
+ " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter)
+ " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr()))
)
success, best_score = meta_model.save_best(-loss_meter.avg)
if success:
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
last_success_epoch = iepoch
save_checkpoint(
{
"hypernet": hypernet.state_dict(),
"task_embed": task_embed,
"meta_model": meta_model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"iepoch": iepoch,
"args": args,
},
logger.path("model"),
logger,
)
loss_meter.reset()
if iepoch - last_success_epoch >= args.early_stop_thresh:
logger.log("Early stop at {:}".format(iepoch))
break
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
print(model)
print(hypernet)
w_container_per_epoch = dict()
for idx in range(0, total_bar):
future_time = env_info["{:}-timestamp".format(idx)]
@@ -183,20 +197,26 @@ if __name__ == "__main__":
parser.add_argument(
"--hidden_dim",
type=int,
required=True,
default=16,
help="The hidden dimension.",
)
parser.add_argument(
"--layer_dim",
type=int,
required=True,
help="The hidden dimension.",
default=16,
help="The layer chunk dimension.",
)
parser.add_argument(
"--time_dim",
type=int,
default=16,
help="The timestamp dimension.",
)
#####
parser.add_argument(
"--init_lr",
type=float,
default=0.1,
default=0.01,
help="The initial learning rate for the optimizer (default is Adam)",
)
parser.add_argument(
@@ -206,10 +226,23 @@ if __name__ == "__main__":
help="The batch size for the meta-model",
)
parser.add_argument(
"--epochs",
"--sampler_enlarge",
type=int,
default=2000,
help="The total number of epochs.",
default=5,
help="Enlarge the #iterations for an epoch",
)
parser.add_argument("--epochs", type=int, default=1000, help="The total #epochs.")
parser.add_argument(
"--early_stop_thresh",
type=int,
default=50,
help="The maximum epochs for early stop.",
)
parser.add_argument(
"--seq_length", type=int, default=5, help="The sequence length."
)
parser.add_argument(
"--workers", type=int, default=4, help="The number of workers in parallel."
)
parser.add_argument(
"--device",
@@ -223,8 +256,7 @@ if __name__ == "__main__":
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
assert args.save_dir is not None, "The save dir argument can not be None"
args.task_dim = args.layer_dim
args.save_dir = "{:}-{:}-d{:}".format(
args.save_dir, args.env_version, args.hidden_dim
args.save_dir = "{:}-{:}-d{:}_{:}_{:}".format(
args.save_dir, args.env_version, args.hidden_dim, args.layer_dim, args.time_dim
)
main(args)