Update sync codes
This commit is contained in:
@@ -3,3 +3,5 @@
|
||||
##################################################
|
||||
from .get_dataset_with_transform import get_datasets, get_nas_search_loaders
|
||||
from .SearchDatasetWrap import SearchDataset
|
||||
|
||||
from .synthetic_adaptive_environment import SynAdaptiveEnv
|
||||
|
84
lib/datasets/synthetic_adaptive_environment.py
Normal file
84
lib/datasets/synthetic_adaptive_environment.py
Normal file
@@ -0,0 +1,84 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
import numpy as np
|
||||
from typing import Optional
|
||||
import torch.utils.data as data
|
||||
|
||||
|
||||
class SynAdaptiveEnv(data.Dataset):
|
||||
"""The synethtic dataset for adaptive environment."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_num_phase: int = 100,
|
||||
interval: float = 0.1,
|
||||
max_scale: float = 4,
|
||||
offset_scale: float = 1.5,
|
||||
mode: Optional[str] = None,
|
||||
):
|
||||
|
||||
self._max_num_phase = max_num_phase
|
||||
self._interval = interval
|
||||
|
||||
self._times = np.arange(0, np.pi * self._max_num_phase, self._interval)
|
||||
xmin, xmax = self._times.min(), self._times.max()
|
||||
self._inputs = []
|
||||
self._total_num = len(self._times)
|
||||
for i in range(self._total_num):
|
||||
scale = (i + 1.0) / self._total_num * max_scale
|
||||
sin_scale = (i + 1.0) / self._total_num * 0.7
|
||||
sin_scale = -4 * (sin_scale - 0.5) ** 2 + 1
|
||||
# scale = -(self._times[i] - (xmin - xmax) / 2) + max_scale
|
||||
self._inputs.append(
|
||||
np.sin(self._times[i] * sin_scale) * (offset_scale - scale)
|
||||
)
|
||||
self._inputs = np.array(self._inputs)
|
||||
# Training Set 60%
|
||||
num_of_train = int(self._total_num * 0.6)
|
||||
# Validation Set 20%
|
||||
num_of_valid = int(self._total_num * 0.2)
|
||||
# Test Set 20%
|
||||
num_of_set = self._total_num - num_of_train - num_of_valid
|
||||
all_indexes = list(range(self._total_num))
|
||||
if mode is None:
|
||||
self._indexes = all_indexes
|
||||
elif mode.lower() in ("train", "training"):
|
||||
self._indexes = all_indexes[:num_of_train]
|
||||
elif mode.lower() in ("valid", "validation"):
|
||||
self._indexes = all_indexes[num_of_train : num_of_train + num_of_valid]
|
||||
elif mode.lower() in ("test", "testing"):
|
||||
self._indexes = all_indexes[num_of_train + num_of_valid :]
|
||||
else:
|
||||
raise ValueError("Unkonwn mode of {:}".format(mode))
|
||||
# transformation function
|
||||
self._transform = None
|
||||
|
||||
def set_transform(self, fn):
|
||||
self._transform = fn
|
||||
|
||||
def __iter__(self):
|
||||
self._iter_num = 0
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self._iter_num >= len(self):
|
||||
raise StopIteration
|
||||
self._iter_num += 1
|
||||
return self.__getitem__(self._iter_num - 1)
|
||||
|
||||
def __getitem__(self, index):
|
||||
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
|
||||
index = self._indexes[index]
|
||||
value = float(self._inputs[index])
|
||||
if self._transform is not None:
|
||||
value = self._transform(value)
|
||||
return index, float(self._times[index]), value
|
||||
|
||||
def __len__(self):
|
||||
return len(self._indexes)
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}({cur_num:}/{total} elements)".format(
|
||||
name=self.__class__.__name__, cur_num=self._total_num, total=len(self)
|
||||
)
|
Reference in New Issue
Block a user