Prototype MAML
This commit is contained in:
@@ -1,7 +1,8 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/basic-same.py --srange 1-999
|
||||
# python exps/LFNA/basic-same.py --srange 1-999 --env_version v1 --hidden_dim 16
|
||||
# python exps/LFNA/basic-same.py --srange 1-999 --env_version v2 --hidden_dim
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
@@ -22,6 +23,8 @@ from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from datasets.synthetic_core import get_synthetic_env
|
||||
from models.xcore import get_model
|
||||
|
||||
from lfna_utils import lfna_setup
|
||||
|
||||
|
||||
def subsample(historical_x, historical_y, maxn=10000):
|
||||
total = historical_x.size(0)
|
||||
@@ -33,22 +36,7 @@ def subsample(historical_x, historical_y, maxn=10000):
|
||||
|
||||
|
||||
def main(args):
|
||||
prepare_seed(args.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
cache_path = (logger.path(None) / ".." / "env-info.pth").resolve()
|
||||
if cache_path.exists():
|
||||
env_info = torch.load(cache_path)
|
||||
else:
|
||||
env_info = dict()
|
||||
dynamic_env = get_synthetic_env()
|
||||
env_info["total"] = len(dynamic_env)
|
||||
for idx, (timestamp, (_allx, _ally)) in enumerate(tqdm(dynamic_env)):
|
||||
env_info["{:}-timestamp".format(idx)] = timestamp
|
||||
env_info["{:}-x".format(idx)] = _allx
|
||||
env_info["{:}-y".format(idx)] = _ally
|
||||
env_info["dynamic_env"] = dynamic_env
|
||||
torch.save(env_info, cache_path)
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
|
||||
# check indexes to be evaluated
|
||||
to_evaluate_indexes = split_str2indexes(args.srange, env_info["total"], None)
|
||||
@@ -78,16 +66,6 @@ def main(args):
|
||||
historical_x = env_info["{:}-x".format(idx)]
|
||||
historical_y = env_info["{:}-y".format(idx)]
|
||||
# build model
|
||||
mean, std = historical_x.mean().item(), historical_x.std().item()
|
||||
model_kwargs = dict(
|
||||
input_dim=1,
|
||||
output_dim=1,
|
||||
act_cls="leaky_relu",
|
||||
norm_cls="identity",
|
||||
# norm_cls="simple_norm",
|
||||
# mean=mean,
|
||||
# std=std,
|
||||
)
|
||||
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
# build optimizer
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
@@ -151,9 +129,9 @@ def main(args):
|
||||
logger,
|
||||
)
|
||||
logger.log("")
|
||||
|
||||
per_timestamp_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
save_checkpoint(
|
||||
{"w_container_per_epoch": w_container_per_epoch},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
@@ -172,6 +150,18 @@ if __name__ == "__main__":
|
||||
default="./outputs/lfna-synthetic/use-same-timestamp",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
@@ -205,4 +195,7 @@ if __name__ == "__main__":
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.env_version, args.hidden_dim
|
||||
)
|
||||
main(args)
|
||||
|
Reference in New Issue
Block a user