NAS-sharing-parameters support 3 datasets / update ops / update pypi
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from .get_dataset_with_transform import get_datasets
|
||||
from .get_dataset_with_transform import get_datasets, get_nas_search_loaders
|
||||
from .SearchDatasetWrap import SearchDataset
|
||||
|
@@ -6,8 +6,12 @@ import os.path as osp
|
||||
import numpy as np
|
||||
import torchvision.datasets as dset
|
||||
import torchvision.transforms as transforms
|
||||
from copy import deepcopy
|
||||
from PIL import Image
|
||||
|
||||
from .DownsampledImageNet import ImageNet16
|
||||
from .SearchDatasetWrap import SearchDataset
|
||||
from config_utils import load_config
|
||||
|
||||
|
||||
Dataset2Class = {'cifar10' : 10,
|
||||
@@ -177,6 +181,47 @@ def get_datasets(name, root, cutout):
|
||||
class_num = Dataset2Class[name]
|
||||
return train_data, test_data, xshape, class_num
|
||||
|
||||
|
||||
def get_nas_search_loaders(train_data, valid_data, dataset, config_root, batch_size, workers):
|
||||
if isinstance(batch_size, (list,tuple)):
|
||||
batch, test_batch = batch_size
|
||||
else:
|
||||
batch, test_batch = batch_size, batch_size
|
||||
if dataset == 'cifar10':
|
||||
#split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
|
||||
cifar_split = load_config('{:}/cifar-split.txt'.format(config_root), None, None)
|
||||
train_split, valid_split = cifar_split.train, cifar_split.valid # search over the proposed training and validation set
|
||||
#logger.log('Load split file from {:}'.format(split_Fpath)) # they are two disjoint groups in the original CIFAR-10 training set
|
||||
# To split data
|
||||
xvalid_data = deepcopy(train_data)
|
||||
if hasattr(xvalid_data, 'transforms'): # to avoid a print issue
|
||||
xvalid_data.transforms = valid_data.transform
|
||||
xvalid_data.transform = deepcopy( valid_data.transform )
|
||||
search_data = SearchDataset(dataset, train_data, train_split, valid_split)
|
||||
# data loader
|
||||
search_loader = torch.utils.data.DataLoader(search_data, batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
||||
train_loader = torch.utils.data.DataLoader(train_data , batch_size=batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), num_workers=workers, pin_memory=True)
|
||||
valid_loader = torch.utils.data.DataLoader(xvalid_data, batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=workers, pin_memory=True)
|
||||
elif dataset == 'cifar100':
|
||||
cifar100_test_split = load_config('{:}/cifar100-test-split.txt'.format(config_root), None, None)
|
||||
search_train_data = train_data
|
||||
search_valid_data = deepcopy(valid_data) ; search_valid_data.transform = train_data.transform
|
||||
search_data = SearchDataset(dataset, [search_train_data,search_valid_data], list(range(len(search_train_data))), cifar100_test_split.xvalid)
|
||||
search_loader = torch.utils.data.DataLoader(search_data, batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
||||
train_loader = torch.utils.data.DataLoader(train_data , batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
||||
valid_loader = torch.utils.data.DataLoader(valid_data , batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_test_split.xvalid), num_workers=workers, pin_memory=True)
|
||||
elif dataset == 'ImageNet16-120':
|
||||
imagenet_test_split = load_config('{:}/imagenet-16-120-test-split.txt'.format(config_root), None, None)
|
||||
search_train_data = train_data
|
||||
search_valid_data = deepcopy(valid_data) ; search_valid_data.transform = train_data.transform
|
||||
search_data = SearchDataset(dataset, [search_train_data,search_valid_data], list(range(len(search_train_data))), imagenet_test_split.xvalid)
|
||||
search_loader = torch.utils.data.DataLoader(search_data, batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
||||
train_loader = torch.utils.data.DataLoader(train_data , batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
||||
valid_loader = torch.utils.data.DataLoader(valid_data , batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_test_split.xvalid), num_workers=workers, pin_memory=True)
|
||||
else:
|
||||
raise ValueError('invalid dataset : {:}'.format(dataset))
|
||||
return search_loader, train_loader, valid_loader
|
||||
|
||||
#if __name__ == '__main__':
|
||||
# train_data, test_data, xshape, class_num = dataset = get_datasets('cifar10', '/data02/dongxuanyi/.torch/cifar.python/', -1)
|
||||
# import pdb; pdb.set_trace()
|
||||
|
@@ -13,16 +13,22 @@ OPS = {
|
||||
'nor_conv_7x7' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1), affine, track_running_stats),
|
||||
'nor_conv_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats),
|
||||
'nor_conv_1x1' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1), affine, track_running_stats),
|
||||
'dua_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats),
|
||||
'dua_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (5,5), (stride,stride), (2,2), (1,1), affine, track_running_stats),
|
||||
'dil_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (3,3), (stride,stride), (2,2), (2,2), affine, track_running_stats),
|
||||
'dil_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (5,5), (stride,stride), (4,4), (2,2), affine, track_running_stats),
|
||||
'skip_connect' : lambda C_in, C_out, stride, affine, track_running_stats: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats),
|
||||
}
|
||||
|
||||
CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3']
|
||||
NAS_BENCH_102 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
|
||||
DARTS_SPACE = ['none', 'skip_connect', 'dua_sepc_3x3', 'dua_sepc_5x5', 'dil_sepc_3x3', 'dil_sepc_5x5', 'avg_pool_3x3', 'max_pool_3x3']
|
||||
|
||||
SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK,
|
||||
'aa-nas' : NAS_BENCH_102,
|
||||
'nas-bench-102': NAS_BENCH_102,
|
||||
'full' : sorted(list(OPS.keys()))}
|
||||
'darts' : DARTS_SPACE}
|
||||
#'full' : sorted(list(OPS.keys()))}
|
||||
|
||||
|
||||
class ReLUConvBN(nn.Module):
|
||||
@@ -39,6 +45,34 @@ class ReLUConvBN(nn.Module):
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class SepConv(nn.Module):
|
||||
|
||||
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
|
||||
super(SepConv, self).__init__()
|
||||
self.op = nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False),
|
||||
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class DualSepConv(nn.Module):
|
||||
|
||||
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
|
||||
super(DualSepConv, self).__init__()
|
||||
self.op_a = SepConv(C_in, C_in , kernel_size, stride, padding, dilation, affine, track_running_stats)
|
||||
self.op_b = SepConv(C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.op_a(x)
|
||||
x = self.op_b(x)
|
||||
return x
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
|
||||
def __init__(self, inplanes, planes, stride, affine=True):
|
||||
|
@@ -3,3 +3,5 @@
|
||||
##################################################
|
||||
from .api import NASBench102API
|
||||
from .api import ArchResults, ResultsCount
|
||||
|
||||
NAS_BENCH_102_API_VERSION="v1.0"
|
||||
|
@@ -1,8 +1,12 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
#################################################################################
|
||||
# NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search #
|
||||
#################################################################################
|
||||
############################################################################################
|
||||
# NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 #
|
||||
############################################################################################
|
||||
# NAS-Bench-102-v1_0-e61699.pth : 6219 architectures are trained once, 1621 architectures are trained twice, 7785 architectures are trained three times. `LESS` only supports CIFAR10-VALID.
|
||||
#
|
||||
#
|
||||
#
|
||||
import os, sys, copy, random, torch, numpy as np
|
||||
from collections import OrderedDict, defaultdict
|
||||
|
||||
|
Reference in New Issue
Block a user