Update NATS-Bench (tss version 0.99)
This commit is contained in:
@@ -10,6 +10,7 @@ import os, copy, random, numpy as np
|
||||
from pathlib import Path
|
||||
from typing import List, Text, Union, Dict, Optional
|
||||
from collections import OrderedDict, defaultdict
|
||||
from .api_utils import time_string
|
||||
from .api_utils import pickle_load
|
||||
from .api_utils import ArchResults
|
||||
from .api_utils import NASBenchMetaAPI
|
||||
@@ -71,7 +72,7 @@ class NATSsize(NASBenchMetaAPI):
|
||||
if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path):
|
||||
file_path_or_dict = str(file_path_or_dict)
|
||||
if verbose:
|
||||
print('Try to create the NATS-Bench (size) api from {:} with fast_mode={:}'.format(file_path_or_dict, fast_mode))
|
||||
print('{:} Try to create the NATS-Bench (size) api from {:} with fast_mode={:}'.format(time_string(), file_path_or_dict, fast_mode))
|
||||
if not os.path.isfile(file_path_or_dict) and not os.path.isdir(file_path_or_dict):
|
||||
raise ValueError('{:} is neither a file or a dir.'.format(file_path_or_dict))
|
||||
self.filename = Path(file_path_or_dict).name
|
||||
@@ -116,14 +117,15 @@ class NATSsize(NASBenchMetaAPI):
|
||||
assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch])
|
||||
self.archstr2index[arch] = idx
|
||||
if self.verbose:
|
||||
print('Create NATS-Bench (size) done with {:}/{:} architectures avaliable.'.format(len(self.evaluated_indexes), len(self.meta_archs)))
|
||||
print('{:} Create NATS-Bench (size) done with {:}/{:} architectures avaliable.'.format(
|
||||
time_string(), len(self.evaluated_indexes), len(self.meta_archs)))
|
||||
|
||||
def reload(self, archive_root: Text = None, index: int = None):
|
||||
"""Overwrite all information of the 'index'-th architecture in the search space, where the data will be loaded from 'archive_root'.
|
||||
If index is None, overwrite all ckps.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call clear_params with archive_root={:} and index={:}'.format(archive_root, index))
|
||||
print('{:} Call clear_params with archive_root={:} and index={:}'.format(time_string(), archive_root, index))
|
||||
if archive_root is None:
|
||||
archive_root = os.path.join(os.environ['TORCH_HOME'], '{:}-full'.format(ALL_BASE_NAMES[-1]))
|
||||
assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root)
|
||||
@@ -155,7 +157,7 @@ class NATSsize(NASBenchMetaAPI):
|
||||
The difference between these three configurations are the number of training epochs.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp))
|
||||
print('{:} Call query_info_str_by_arch with arch={:} and hp={:}'.format(time_string(), arch, hp))
|
||||
return self._query_info_str_by_arch(arch, hp, print_information)
|
||||
|
||||
def get_more_info(self, index, dataset: Text, iepoch=None, hp='12', is_random=True):
|
||||
@@ -177,7 +179,8 @@ class NATSsize(NASBenchMetaAPI):
|
||||
When is_random=False, the performanceo of all trials will be averaged.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random))
|
||||
print('{:} Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(
|
||||
time_string(), index, dataset, iepoch, hp, is_random))
|
||||
index = self.query_index_by_arch(index) # To avoid the input is a string or an instance of a arch object
|
||||
self._prepare_info(index)
|
||||
if index not in self.arch2infos_dict:
|
||||
|
@@ -10,6 +10,8 @@ import os, copy, random, numpy as np
|
||||
from pathlib import Path
|
||||
from typing import List, Text, Union, Dict, Optional
|
||||
from collections import OrderedDict, defaultdict
|
||||
import warnings
|
||||
from .api_utils import time_string
|
||||
from .api_utils import pickle_load
|
||||
from .api_utils import ArchResults
|
||||
from .api_utils import NASBenchMetaAPI
|
||||
@@ -60,58 +62,89 @@ class NATStopology(NASBenchMetaAPI):
|
||||
self.reset_time()
|
||||
if file_path_or_dict is None:
|
||||
file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1])
|
||||
print ('Try to use the default NATS-Bench (topology) path from {:}.'.format(file_path_or_dict))
|
||||
print ('{:} Try to use the default NATS-Bench (topology) path from {:}.'.format(time_string(), file_path_or_dict))
|
||||
if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path):
|
||||
file_path_or_dict = str(file_path_or_dict)
|
||||
if verbose: print('try to create the NATS-Bench (topology) api from {:}'.format(file_path_or_dict))
|
||||
assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
|
||||
if verbose:
|
||||
print('{:} Try to create the NATS-Bench (topology) api from {:}'.format(time_string(), file_path_or_dict))
|
||||
if not os.path.isfile(file_path_or_dict) and not os.path.isdir(file_path_or_dict):
|
||||
raise ValueError('{:} is neither a file or a dir.'.format(file_path_or_dict))
|
||||
self.filename = Path(file_path_or_dict).name
|
||||
file_path_or_dict = np.load(file_path_or_dict)
|
||||
if fast_mode:
|
||||
if os.path.isfile(file_path_or_dict):
|
||||
raise ValueError('fast_mode={:} must feed the path for directory : {:}'.format(fast_mode, file_path_or_dict))
|
||||
else:
|
||||
self._archive_dir = file_path_or_dict
|
||||
else:
|
||||
if os.path.isdir(file_path_or_dict):
|
||||
raise ValueError('fast_mode={:} must feed the path for file : {:}'.format(fast_mode, file_path_or_dict))
|
||||
else:
|
||||
file_path_or_dict = pickle_load(file_path_or_dict)
|
||||
elif isinstance(file_path_or_dict, dict):
|
||||
file_path_or_dict = copy.deepcopy(file_path_or_dict)
|
||||
else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict)))
|
||||
assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
|
||||
self.verbose = verbose # [TODO] a flag indicating whether to print more logs
|
||||
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
|
||||
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
|
||||
self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
|
||||
# This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults
|
||||
self.arch2infos_dict = OrderedDict()
|
||||
self._avaliable_hps = set(['12', '200'])
|
||||
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
|
||||
all_info = file_path_or_dict['arch2infos'][xkey]
|
||||
hp2archres = OrderedDict()
|
||||
# self.arch2infos_less[xkey] = ArchResults.create_from_state_dict( all_info['less'] )
|
||||
# self.arch2infos_full[xkey] = ArchResults.create_from_state_dict( all_info['full'] )
|
||||
hp2archres['12'] = ArchResults.create_from_state_dict(all_info['less'])
|
||||
hp2archres['200'] = ArchResults.create_from_state_dict(all_info['full'])
|
||||
self.arch2infos_dict[xkey] = hp2archres
|
||||
self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes']))
|
||||
if isinstance(file_path_or_dict, dict):
|
||||
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
|
||||
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
|
||||
self.meta_archs = copy.deepcopy(file_path_or_dict['meta_archs'])
|
||||
# This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults
|
||||
self.arch2infos_dict = OrderedDict()
|
||||
self._avaliable_hps = set()
|
||||
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
|
||||
all_info = file_path_or_dict['arch2infos'][xkey]
|
||||
hp2archres = OrderedDict()
|
||||
for hp_key, results in all_infos.items():
|
||||
hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
|
||||
self._avaliable_hps.add(hp_key) # save the avaliable hyper-parameter
|
||||
self.arch2infos_dict[xkey] = hp2archres
|
||||
self.evaluated_indexes = list(file_path_or_dict['evaluated_indexes'])
|
||||
elif self.archive_dir is not None:
|
||||
benchmark_meta = pickle_load('{:}/meta.{:}'.format(self.archive_dir, PICKLE_EXT))
|
||||
self.meta_archs = copy.deepcopy(benchmark_meta['meta_archs'])
|
||||
self.arch2infos_dict = OrderedDict()
|
||||
self._avaliable_hps = set()
|
||||
self.evaluated_indexes = set()
|
||||
else:
|
||||
raise ValueError('file_path_or_dict [{:}] must be a dict or archive_dir must be set'.format(type(file_path_or_dict)))
|
||||
self.archstr2index = {}
|
||||
for idx, arch in enumerate(self.meta_archs):
|
||||
assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch])
|
||||
self.archstr2index[ arch ] = idx
|
||||
self.archstr2index[arch] = idx
|
||||
if self.verbose:
|
||||
print('{:} Create NATS-Bench (topology) done with {:}/{:} architectures avaliable.'.format(
|
||||
time_string(), len(self.evaluated_indexes), len(self.meta_archs)))
|
||||
|
||||
def reload(self, archive_root: Text = None, index: int = None):
|
||||
"""Overwrite all information of the 'index'-th architecture in the search space.
|
||||
It will load its data from 'archive_root'.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('{:} Call clear_params with archive_root={:} and index={:}'.format(
|
||||
time_string(), archive_root, index))
|
||||
if archive_root is None:
|
||||
archive_root = os.path.join(os.environ['TORCH_HOME'], ALL_ARCHIVE_DIRS[-1])
|
||||
assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root)
|
||||
archive_root = os.path.join(os.environ['TORCH_HOME'], '{:}-full'.format(ALL_BASE_NAMES[-1]))
|
||||
if not os.path.isdir(archive_root):
|
||||
warnings.warn('The input archive_root is None and the default archive_root path ({:}) does not exist, try to use self.archive_dir.'.format(archive_root))
|
||||
archive_root = self.archive_dir
|
||||
if archive_root is None or not os.path.isdir(archive_root):
|
||||
raise ValueError('Invalid archive_root : {:}'.format(archive_root))
|
||||
if index is None:
|
||||
indexes = list(range(len(self)))
|
||||
else:
|
||||
indexes = [index]
|
||||
for idx in indexes:
|
||||
assert 0 <= idx < len(self.meta_archs), 'invalid index of {:}'.format(idx)
|
||||
xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(idx))
|
||||
xfile_path = os.path.join(archive_root, '{:06d}.{:}'.format(idx, PICKLE_EXT))
|
||||
if not os.path.isfile(xfile_path):
|
||||
xfile_path = os.path.join(archive_root, '{:d}.{:}'.format(idx, PICKLE_EXT))
|
||||
assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path)
|
||||
xdata = torch.load(xfile_path, map_location='cpu')
|
||||
assert isinstance(xdata, dict) and 'full' in xdata and 'less' in xdata, 'invalid format of data in {:}'.format(xfile_path)
|
||||
xdata = pickle_load(xfile_path)
|
||||
assert isinstance(xdata, dict), 'invalid format of data in {:}'.format(xfile_path)
|
||||
self.evaluated_indexes.add(idx)
|
||||
hp2archres = OrderedDict()
|
||||
hp2archres['12'] = ArchResults.create_from_state_dict(xdata['less'])
|
||||
hp2archres['200'] = ArchResults.create_from_state_dict(xdata['full'])
|
||||
for hp_key, results in xdata.items():
|
||||
hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
|
||||
self._avaliable_hps.add(hp_key)
|
||||
self.arch2infos_dict[idx] = hp2archres
|
||||
|
||||
def query_info_str_by_arch(self, arch, hp: Text='12'):
|
||||
@@ -122,7 +155,7 @@ class NATStopology(NASBenchMetaAPI):
|
||||
The difference between these three configurations are the number of training epochs.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp))
|
||||
print('{:} Call query_info_str_by_arch with arch={:} and hp={:}'.format(time_string(), arch, hp))
|
||||
return self._query_info_str_by_arch(arch, hp, print_information)
|
||||
|
||||
# obtain the metric for the `index`-th architecture
|
||||
@@ -142,8 +175,10 @@ class NATStopology(NASBenchMetaAPI):
|
||||
# When is_random=False, the performanceo of all trials will be averaged.
|
||||
def get_more_info(self, index, dataset, iepoch=None, hp='12', is_random=True):
|
||||
if self.verbose:
|
||||
print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random))
|
||||
print('{:} Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(
|
||||
time_string(), index, dataset, iepoch, hp, is_random))
|
||||
index = self.query_index_by_arch(index) # To avoid the input is a string or an instance of a arch object
|
||||
self._prepare_info(index)
|
||||
if index not in self.arch2infos_dict:
|
||||
raise ValueError('Did not find {:} from arch2infos_dict.'.format(index))
|
||||
archresult = self.arch2infos_dict[index][str(hp)]
|
||||
|
@@ -10,9 +10,9 @@
|
||||
# History:
|
||||
# [2020.07.31] The first version, where most content reused nas_201_api/api_utils.py
|
||||
#
|
||||
import os, abc, copy, random, numpy as np
|
||||
import os, abc, time, copy, random, numpy as np
|
||||
import bz2, pickle
|
||||
import importlib, warnings
|
||||
import warnings
|
||||
from typing import List, Text, Union, Dict, Optional
|
||||
from collections import OrderedDict, defaultdict
|
||||
|
||||
@@ -36,6 +36,12 @@ def pickle_load(file_path, ext='.pbz2'):
|
||||
return pickle.load(cfile)
|
||||
|
||||
|
||||
def time_string():
|
||||
ISOTIMEFORMAT='%Y-%m-%d %X'
|
||||
string = '[{:}]'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
|
||||
return string
|
||||
|
||||
|
||||
def remap_dataset_set_names(dataset, metric_on_set, verbose=False):
|
||||
"""re-map the metric_on_set to internal keys"""
|
||||
if verbose:
|
||||
@@ -136,7 +142,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
Otherwise, it will return an int in [0, the-number-of-candidates-in-the-search-space).
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call query_index_by_arch with arch={:}'.format(arch))
|
||||
print('{:} Call query_index_by_arch with arch={:}'.format(time_string(), arch))
|
||||
if isinstance(arch, int):
|
||||
if 0 <= arch < len(self):
|
||||
return arch
|
||||
@@ -162,13 +168,13 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
self.reload(self.archive_dir, index)
|
||||
elif not self.fast_mode:
|
||||
if self.verbose:
|
||||
print('Call _prepare_info with index={:} skip because it is not the fast mode.'.format(index))
|
||||
print('{:} Call _prepare_info with index={:} skip because it is not the fast mode.'.format(time_string(), index))
|
||||
else:
|
||||
raise ValueError('Invalid status: fast_mode={:} and archive_dir={:}'.format(self.fast_mode, self.archive_dir))
|
||||
else:
|
||||
assert index in self.evaluated_indexes, 'The index of {:} is not in self.evaluated_indexes, there must be something wrong.'.format(index)
|
||||
if self.verbose:
|
||||
print('Call _prepare_info with index={:} skip because it is in arch2infos_dict'.format(index))
|
||||
print('{:} Call _prepare_info with index={:} skip because it is in arch2infos_dict'.format(time_string(), index))
|
||||
|
||||
@abc.abstractmethod
|
||||
def reload(self, archive_root: Text = None, index: int = None):
|
||||
@@ -185,7 +191,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
-- '01' or '12' or '90': clear all the weights in arch2infos_dict[index][hp].
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call clear_params with index={:} and hp={:}'.format(index, hp))
|
||||
print('{:} Call clear_params with index={:} and hp={:}'.format(time_string(), index, hp))
|
||||
if index not in self.arch2infos_dict:
|
||||
warnings.warn('The {:}-th architecture is not in the benchmark data yet, no need to clear params.'.format(index))
|
||||
elif hp is None:
|
||||
@@ -243,7 +249,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
-- ImageNet16-120 : training the model on the ImageNet16-120 training set.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call query_by_index with arch_index={:}, dataname={:}, hp={:}'.format(arch_index, dataname, hp))
|
||||
print('{:} Call query_by_index with arch_index={:}, dataname={:}, hp={:}'.format(time_string(), arch_index, dataname, hp))
|
||||
info = self.query_meta_info_by_index(arch_index, hp)
|
||||
if dataname is None: return info
|
||||
else:
|
||||
@@ -254,7 +260,8 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
def find_best(self, dataset, metric_on_set, FLOP_max=None, Param_max=None, hp: Text = '12'):
|
||||
"""Find the architecture with the highest accuracy based on some constraints."""
|
||||
if self.verbose:
|
||||
print('Call find_best with dataset={:}, metric_on_set={:}, hp={:} | with #FLOPs < {:} and #Params < {:}'.format(dataset, metric_on_set, hp, FLOP_max, Param_max))
|
||||
print('{:} Call find_best with dataset={:}, metric_on_set={:}, hp={:} | with #FLOPs < {:} and #Params < {:}'.format(
|
||||
time_string(), dataset, metric_on_set, hp, FLOP_max, Param_max))
|
||||
dataset, metric_on_set = remap_dataset_set_names(dataset, metric_on_set, self.verbose)
|
||||
best_index, highest_accuracy = -1, None
|
||||
evaluated_indexes = sorted(list(self.evaluated_indexes))
|
||||
@@ -287,7 +294,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
-- 200 : train the model by 200 epochs
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call the get_net_param function with index={:}, dataset={:}, seed={:}, hp={:}'.format(index, dataset, seed, hp))
|
||||
print('{:} Call the get_net_param function with index={:}, dataset={:}, seed={:}, hp={:}'.format(time_string(), index, dataset, seed, hp))
|
||||
info = self.query_meta_info_by_index(index, hp)
|
||||
return info.get_net_param(dataset, seed)
|
||||
|
||||
@@ -304,7 +311,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
config = api.get_net_config(128, 'cifar10')
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call the get_net_config function with index={:}, dataset={:}.'.format(index, dataset))
|
||||
print('{:} Call the get_net_config function with index={:}, dataset={:}.'.format(time_string(), index, dataset))
|
||||
self._prepare_info(index)
|
||||
if index in self.arch2infos_dict:
|
||||
info = self.arch2infos_dict[index]
|
||||
@@ -318,7 +325,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
def get_cost_info(self, index: int, dataset: Text, hp: Text = '12') -> Dict[Text, float]:
|
||||
"""To obtain the cost metric for the `index`-th architecture on a dataset."""
|
||||
if self.verbose:
|
||||
print('Call the get_cost_info function with index={:}, dataset={:}, and hp={:}.'.format(index, dataset, hp))
|
||||
print('{:} Call the get_cost_info function with index={:}, dataset={:}, and hp={:}.'.format(time_string(), index, dataset, hp))
|
||||
self._prepare_info(index)
|
||||
info = self.query_meta_info_by_index(index, hp)
|
||||
return info.get_compute_costs(dataset)
|
||||
@@ -331,7 +338,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
:return: return a float value in seconds
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call the get_latency function with index={:}, dataset={:}, and hp={:}.'.format(index, dataset, hp))
|
||||
print('{:} Call the get_latency function with index={:}, dataset={:}, and hp={:}.'.format(time_string(), index, dataset, hp))
|
||||
cost_dict = self.get_cost_info(index, dataset, hp)
|
||||
return cost_dict['latency']
|
||||
|
||||
|
Reference in New Issue
Block a user