layers -> xlayers

This commit is contained in:
D-X-Y
2021-03-18 20:15:50 +08:00
parent eabdd21d97
commit badb6cf51d
16 changed files with 140 additions and 30 deletions

11
lib/xlayers/__init__.py Normal file
View File

@@ -0,0 +1,11 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
# This file is expected to be self-contained, expect
# for importing from spaces to include search space.
#####################################################
from .drop import DropBlock2d, DropPath
from .mlp import MLP
from .weight_init import trunc_normal_
from .positional_embedding import PositionalEncoder

229
lib/xlayers/drop.py Normal file
View File

@@ -0,0 +1,229 @@
""" Borrowed from https://github.com/rwightman/pytorch-image-models
DropBlock, DropPath
PyTorch implementations of DropBlock and DropPath (Stochastic Depth) regularization layers.
Papers:
DropBlock: A regularization method for convolutional networks (https://arxiv.org/abs/1810.12890)
Deep Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382)
Code:
DropBlock impl inspired by two Tensorflow impl that I liked:
- https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_model.py#L74
- https://github.com/clovaai/assembled-cnn/blob/master/nets/blocks.py
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
def drop_block_2d(
x,
drop_prob: float = 0.1,
block_size: int = 7,
gamma_scale: float = 1.0,
with_noise: bool = False,
inplace: bool = False,
batchwise: bool = False,
):
"""DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
DropBlock with an experimental gaussian noise option. This layer has been tested on a few training
runs with success, but needs further validation and possibly optimization for lower runtime impact.
"""
B, C, H, W = x.shape
total_size = W * H
clipped_block_size = min(block_size, min(W, H))
# seed_drop_rate, the gamma parameter
gamma = (
gamma_scale
* drop_prob
* total_size
/ clipped_block_size ** 2
/ ((W - block_size + 1) * (H - block_size + 1))
)
# Forces the block to be inside the feature map.
w_i, h_i = torch.meshgrid(
torch.arange(W).to(x.device), torch.arange(H).to(x.device)
)
valid_block = (
(w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)
) & ((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2))
valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype)
if batchwise:
# one mask for whole batch, quite a bit faster
uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device)
else:
uniform_noise = torch.rand_like(x)
block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype)
block_mask = -F.max_pool2d(
-block_mask,
kernel_size=clipped_block_size, # block_size,
stride=1,
padding=clipped_block_size // 2,
)
if with_noise:
normal_noise = (
torch.randn((1, C, H, W), dtype=x.dtype, device=x.device)
if batchwise
else torch.randn_like(x)
)
if inplace:
x.mul_(block_mask).add_(normal_noise * (1 - block_mask))
else:
x = x * block_mask + normal_noise * (1 - block_mask)
else:
normalize_scale = (
block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)
).to(x.dtype)
if inplace:
x.mul_(block_mask * normalize_scale)
else:
x = x * block_mask * normalize_scale
return x
def drop_block_fast_2d(
x: torch.Tensor,
drop_prob: float = 0.1,
block_size: int = 7,
gamma_scale: float = 1.0,
with_noise: bool = False,
inplace: bool = False,
batchwise: bool = False,
):
"""DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid
block mask at edges.
"""
B, C, H, W = x.shape
total_size = W * H
clipped_block_size = min(block_size, min(W, H))
gamma = (
gamma_scale
* drop_prob
* total_size
/ clipped_block_size ** 2
/ ((W - block_size + 1) * (H - block_size + 1))
)
if batchwise:
# one mask for whole batch, quite a bit faster
block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma
else:
# mask per batch element
block_mask = torch.rand_like(x) < gamma
block_mask = F.max_pool2d(
block_mask.to(x.dtype),
kernel_size=clipped_block_size,
stride=1,
padding=clipped_block_size // 2,
)
if with_noise:
normal_noise = (
torch.randn((1, C, H, W), dtype=x.dtype, device=x.device)
if batchwise
else torch.randn_like(x)
)
if inplace:
x.mul_(1.0 - block_mask).add_(normal_noise * block_mask)
else:
x = x * (1.0 - block_mask) + normal_noise * block_mask
else:
block_mask = 1 - block_mask
normalize_scale = (
block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)
).to(dtype=x.dtype)
if inplace:
x.mul_(block_mask * normalize_scale)
else:
x = x * block_mask * normalize_scale
return x
class DropBlock2d(nn.Module):
"""DropBlock. See https://arxiv.org/pdf/1810.12890.pdf"""
def __init__(
self,
drop_prob=0.1,
block_size=7,
gamma_scale=1.0,
with_noise=False,
inplace=False,
batchwise=False,
fast=True,
):
super(DropBlock2d, self).__init__()
self.drop_prob = drop_prob
self.gamma_scale = gamma_scale
self.block_size = block_size
self.with_noise = with_noise
self.inplace = inplace
self.batchwise = batchwise
self.fast = fast # FIXME finish comparisons of fast vs not
def forward(self, x):
if not self.training or not self.drop_prob:
return x
if self.fast:
return drop_block_fast_2d(
x,
self.drop_prob,
self.block_size,
self.gamma_scale,
self.with_noise,
self.inplace,
self.batchwise,
)
else:
return drop_block_2d(
x,
self.drop_prob,
self.block_size,
self.gamma_scale,
self.with_noise,
self.inplace,
self.batchwise,
)
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)

29
lib/xlayers/mlp.py Normal file
View File

@@ -0,0 +1,29 @@
import torch.nn as nn
from typing import Optional
class MLP(nn.Module):
# MLP: FC -> Activation -> Drop -> FC -> Drop
def __init__(
self,
in_features,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer=nn.GELU,
drop: Optional[float] = None,
):
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop or 0)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x

View File

@@ -0,0 +1,35 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
#####################################################
import torch
import torch.nn as nn
import math
class PositionalEncoder(nn.Module):
# Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
# https://github.com/pytorch/examples/blob/master/word_language_model/model.py#L65
def __init__(self, d_model, max_seq_len, dropout=0.1):
super(PositionalEncoder, self).__init__()
self.d_model = d_model
# create constant 'pe' matrix with values dependant on
# pos and i
pe = torch.zeros(max_seq_len, d_model)
for pos in range(max_seq_len):
for i in range(0, d_model):
div = 10000 ** ((i // 2) * 2 / d_model)
value = pos / div
if i % 2 == 0:
pe[pos, i] = math.sin(value)
else:
pe[pos, i] = math.cos(value)
pe = pe.unsqueeze(0)
self.dropout = nn.Dropout(p=dropout)
self.register_buffer("pe", pe)
def forward(self, x):
batch, seq, fdim = x.shape[:3]
embeddings = self.pe[:, :seq, :fdim]
outs = self.dropout(x + embeddings)
return outs

View File

@@ -0,0 +1,5 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
from .super_module import SuperModule
from .super_mlp import SuperLinear

98
lib/xlayers/super_mlp.py Normal file
View File

@@ -0,0 +1,98 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
import torch
import torch.nn as nn
import math
from typing import Optional, Union
import spaces
from .super_module import SuperModule
from .super_module import SuperRunMode
IntSpaceType = Union[int, spaces.Integer, spaces.Categorical]
BoolSpaceType = Union[bool, spaces.Categorical]
class SuperLinear(SuperModule):
"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`"""
def __init__(
self,
in_features: IntSpaceType,
out_features: IntSpaceType,
bias: BoolSpaceType = True,
) -> None:
super(SuperLinear, self).__init__()
# the raw input args
self._in_features = in_features
self._out_features = out_features
self._bias = bias
self._super_weight = torch.nn.Parameter(
torch.Tensor(self.out_features, self.in_features)
)
if self.bias:
self._super_bias = torch.nn.Parameter(torch.Tensor(self.out_features))
else:
self.register_parameter("_super_bias", None)
self.reset_parameters()
@property
def in_features(self):
return spaces.get_max(self._in_features)
@property
def out_features(self):
return spaces.get_max(self._out_features)
@property
def bias(self):
return spaces.has_categorical(self._bias, True)
def abstract_search_space(self):
print('-')
def reset_parameters(self) -> None:
nn.init.kaiming_uniform_(self._super_weight, a=math.sqrt(5))
if self.bias:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self._super_weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self._super_bias, -bound, bound)
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
return F.linear(input, self._super_weight, self._super_bias)
def extra_repr(self) -> str:
return "in_features={:}, out_features={:}, bias={:}".format(
self.in_features, self.out_features, self.bias
)
class SuperMLP(nn.Module):
# MLP: FC -> Activation -> Drop -> FC -> Drop
def __init__(
self,
in_features,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer=nn.GELU,
drop: Optional[float] = None,
):
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop or 0)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x

View File

@@ -0,0 +1,42 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.01 #
#####################################################
import abc
import torch.nn as nn
from enum import Enum
class SuperRunMode(Enum):
"""This class defines the enumerations for Super Model Running Mode."""
FullModel = "fullmodel"
Default = "fullmodel"
class SuperModule(abc.ABC, nn.Module):
"""This class equips the nn.Module class with the ability to apply AutoDL."""
def __init__(self):
super(SuperModule, self).__init__()
self._super_run_type = SuperRunMode.Default
@abc.abstractmethod
def abstract_search_space(self):
raise NotImplementedError
@property
def super_run_type(self):
return self._super_run_type
@abc.abstractmethod
def forward_raw(self, *inputs):
raise NotImplementedError
def forward(self, *inputs):
if self.super_run_type == SuperRunMode.FullModel:
return self.forward_raw(*inputs)
else:
raise ModeError(
"Unknown Super Model Run Mode: {:}".format(self.super_run_type)
)

View File

@@ -0,0 +1,63 @@
# Borrowed from https://github.com/rwightman/pytorch-image-models
import torch
import math
import warnings
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)