Add SuperTransformer
This commit is contained in:
@@ -37,10 +37,7 @@ class SuperAttention(SuperModule):
|
||||
self._proj_dim = proj_dim
|
||||
self._num_heads = num_heads
|
||||
self._qkv_bias = qkv_bias
|
||||
# head_dim = dim // num_heads
|
||||
# self.scale = qk_scale or math.sqrt(head_dim)
|
||||
|
||||
# self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.q_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias)
|
||||
self.k_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias)
|
||||
self.v_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias)
|
||||
|
@@ -2,6 +2,8 @@
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
from .super_module import SuperRunMode
|
||||
from .super_module import IntSpaceType
|
||||
|
||||
from .super_module import SuperModule
|
||||
from .super_container import SuperSequential
|
||||
from .super_linear import SuperLinear
|
||||
@@ -9,3 +11,6 @@ from .super_linear import SuperMLPv1, SuperMLPv2
|
||||
from .super_norm import SuperLayerNorm1D
|
||||
from .super_attention import SuperAttention
|
||||
from .super_transformer import SuperTransformerEncoderLayer
|
||||
|
||||
from .super_trade_stem import SuperAlphaEBDv1
|
||||
from .super_positional_embedding import SuperPositionalEncoder
|
||||
|
@@ -109,7 +109,7 @@ class SuperLinear(SuperModule):
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "in_features={:}, out_features={:}, bias={:}".format(
|
||||
self.in_features, self.out_features, self.bias
|
||||
self._in_features, self._out_features, self._bias
|
||||
)
|
||||
|
||||
|
||||
|
@@ -75,8 +75,10 @@ class SuperLayerNorm1D(SuperModule):
|
||||
return F.layer_norm(input, (self.in_dim,), self.weight, self.bias, self.eps)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "{in_dim}, eps={eps}, " "elementwise_affine={elementwise_affine}".format(
|
||||
in_dim=self._in_dim,
|
||||
eps=self._eps,
|
||||
elementwise_affine=self._elementwise_affine,
|
||||
return (
|
||||
"shape={in_dim}, eps={eps}, elementwise_affine={elementwise_affine}".format(
|
||||
in_dim=self._in_dim,
|
||||
eps=self._eps,
|
||||
elementwise_affine=self._elementwise_affine,
|
||||
)
|
||||
)
|
||||
|
68
lib/xlayers/super_positional_embedding.py
Normal file
68
lib/xlayers/super_positional_embedding.py
Normal file
@@ -0,0 +1,68 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
||||
#####################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
|
||||
import spaces
|
||||
from .super_module import SuperModule
|
||||
from .super_module import IntSpaceType
|
||||
|
||||
|
||||
class SuperPositionalEncoder(SuperModule):
|
||||
"""Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
|
||||
https://github.com/pytorch/examples/blob/master/word_language_model/model.py#L65
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: IntSpaceType, max_seq_len: int, dropout: float = 0.1):
|
||||
super(SuperPositionalEncoder, self).__init__()
|
||||
self._d_model = d_model
|
||||
# create constant 'pe' matrix with values dependant on
|
||||
# pos and i
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
self.register_buffer("pe", self.create_pos_embed(max_seq_len, self.d_model))
|
||||
|
||||
@property
|
||||
def d_model(self):
|
||||
return spaces.get_max(self._d_model)
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
root_node = spaces.VirtualNode(id(self))
|
||||
if not spaces.is_determined(self._d_model):
|
||||
root_node.append("_d_model", self._d_model.abstract(reuse_last=True))
|
||||
return root_node
|
||||
|
||||
def create_pos_embed(self, max_seq_len, d_model):
|
||||
pe = torch.zeros(max_seq_len, d_model)
|
||||
for pos in range(max_seq_len):
|
||||
for i in range(0, d_model):
|
||||
div = 10000 ** ((i // 2) * 2 / d_model)
|
||||
value = pos / div
|
||||
if i % 2 == 0:
|
||||
pe[pos, i] = math.sin(value)
|
||||
else:
|
||||
pe[pos, i] = math.cos(value)
|
||||
return pe.unsqueeze(0)
|
||||
|
||||
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||
batch, seq, fdim = input.shape[:3]
|
||||
embeddings = self.pe[:, :seq]
|
||||
if not spaces.is_determined(self._d_model):
|
||||
expected_d_model = self.abstract_child["_d_model"].value
|
||||
else:
|
||||
expected_d_model = spaces.get_determined_value(self._d_model)
|
||||
assert fdim == expected_d_model, "{:} vs {:}".format(fdim, expected_d_model)
|
||||
|
||||
embeddings = torch.nn.functional.interpolate(
|
||||
embeddings, size=(expected_d_model), mode="linear", align_corners=True
|
||||
)
|
||||
outs = self.dropout(input + embeddings)
|
||||
return outs
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
batch, seq, fdim = input.shape[:3]
|
||||
embeddings = self.pe[:, :seq]
|
||||
outs = self.dropout(input + embeddings)
|
||||
return outs
|
63
lib/xlayers/super_trade_stem.py
Normal file
63
lib/xlayers/super_trade_stem.py
Normal file
@@ -0,0 +1,63 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Optional, Text
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import spaces
|
||||
from .super_linear import SuperLinear
|
||||
from .super_module import SuperModule
|
||||
from .super_module import IntSpaceType
|
||||
|
||||
|
||||
class SuperAlphaEBDv1(SuperModule):
|
||||
"""A simple layer to convert the raw trading data from 1-D to 2-D data and apply an FC layer."""
|
||||
|
||||
def __init__(self, d_feat: int, embed_dim: IntSpaceType):
|
||||
super(SuperAlphaEBDv1, self).__init__()
|
||||
self._d_feat = d_feat
|
||||
self._embed_dim = embed_dim
|
||||
self.proj = SuperLinear(d_feat, embed_dim)
|
||||
|
||||
@property
|
||||
def embed_dim(self):
|
||||
return spaces.get_max(self._embed_dim)
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
root_node = spaces.VirtualNode(id(self))
|
||||
space = self.proj.abstract_search_space
|
||||
if not spaces.is_determined(space):
|
||||
root_node.append("proj", space)
|
||||
if not spaces.is_determined(self._embed_dim):
|
||||
root_node.append("_embed_dim", self._embed_dim.abstract(reuse_last=True))
|
||||
return root_node
|
||||
|
||||
def apply_candidate(self, abstract_child: spaces.VirtualNode):
|
||||
super(SuperAlphaEBDv1, self).apply_candidate(abstract_child)
|
||||
if "proj" in abstract_child:
|
||||
self.proj.apply_candidate(abstract_child["proj"])
|
||||
|
||||
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||
x = input.reshape(len(input), self._d_feat, -1) # [N, F*T] -> [N, F, T]
|
||||
x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F]
|
||||
if not spaces.is_determined(self._embed_dim):
|
||||
embed_dim = self.abstract_child["_embed_dim"].value
|
||||
else:
|
||||
embed_dim = spaces.get_determined_value(self._embed_dim)
|
||||
out = self.proj(x) * math.sqrt(embed_dim)
|
||||
return out
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
x = input.reshape(len(input), self._d_feat, -1) # [N, F*T] -> [N, F, T]
|
||||
x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F]
|
||||
out = self.proj(x) * math.sqrt(self.embed_dim)
|
||||
return out
|
Reference in New Issue
Block a user