Complete LFNA 1.0
This commit is contained in:
@@ -17,7 +17,7 @@ class LFNA_Meta(super_core.SuperModule):
|
||||
def __init__(
|
||||
self,
|
||||
shape_container,
|
||||
layer_embeding,
|
||||
layer_embedding,
|
||||
time_embedding,
|
||||
meta_timestamps,
|
||||
mha_depth: int = 2,
|
||||
@@ -33,13 +33,16 @@ class LFNA_Meta(super_core.SuperModule):
|
||||
|
||||
self.register_parameter(
|
||||
"_super_layer_embed",
|
||||
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)),
|
||||
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embedding)),
|
||||
)
|
||||
self.register_parameter(
|
||||
"_super_meta_embed",
|
||||
torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_embedding)),
|
||||
)
|
||||
self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps))
|
||||
self._time_embed_dim = time_embedding
|
||||
self._append_meta_embed = dict(fixed=None, learnt=None)
|
||||
self._append_meta_timestamps = dict(fixed=None, learnt=None)
|
||||
|
||||
# build transformer
|
||||
layers = []
|
||||
@@ -60,9 +63,9 @@ class LFNA_Meta(super_core.SuperModule):
|
||||
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="dual_norm_mlp"),
|
||||
input_dim=layer_embeding + time_embedding,
|
||||
input_dim=layer_embedding + time_embedding,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dims=[(layer_embeding + time_embedding) * 2] * 3,
|
||||
hidden_dims=[(layer_embedding + time_embedding) * 2] * 3,
|
||||
act_cls="gelu",
|
||||
norm_cls="layer_norm_1d",
|
||||
dropout=dropout,
|
||||
@@ -82,21 +85,68 @@ class LFNA_Meta(super_core.SuperModule):
|
||||
std=0.02,
|
||||
)
|
||||
|
||||
@property
|
||||
def meta_timestamps(self):
|
||||
meta_timestamps = [self._meta_timestamps]
|
||||
for key in ("fixed", "learnt"):
|
||||
if self._append_meta_timestamps[key] is not None:
|
||||
meta_timestamps.append(self._append_meta_timestamps[key])
|
||||
return torch.cat(meta_timestamps)
|
||||
|
||||
@property
|
||||
def super_meta_embed(self):
|
||||
meta_embed = [self._super_meta_embed]
|
||||
for key in ("fixed", "learnt"):
|
||||
if self._append_meta_embed[key] is not None:
|
||||
meta_embed.append(self._append_meta_embed[key])
|
||||
return torch.cat(meta_embed)
|
||||
|
||||
def create_meta_embed(self):
|
||||
param = torch.nn.Parameter(torch.Tensor(1, self._time_embed_dim))
|
||||
trunc_normal_(param, std=0.02)
|
||||
return param.to(self._super_meta_embed.device)
|
||||
|
||||
def get_closest_meta_distance(self, timestamp):
|
||||
with torch.no_grad():
|
||||
distances = torch.abs(self.meta_timestamps - timestamp)
|
||||
return torch.min(distances).item()
|
||||
|
||||
def replace_append_learnt(self, timestamp, meta_embed):
|
||||
self._append_meta_embed["learnt"] = meta_embed
|
||||
self._append_meta_timestamps["learnt"] = timestamp
|
||||
|
||||
def append_fixed(self, timestamp, meta_embed):
|
||||
with torch.no_grad():
|
||||
timestamp, meta_embed = timestamp.clone(), meta_embed.clone()
|
||||
if self._append_meta_timestamps["fixed"] is None:
|
||||
self._append_meta_timestamps["fixed"] = timestamp
|
||||
else:
|
||||
self._append_meta_timestamps["fixed"] = torch.cat(
|
||||
(self._append_meta_timestamps["fixed"], timestamp), dim=0
|
||||
)
|
||||
if self._append_meta_embed["fixed"] is None:
|
||||
self._append_meta_embed["fixed"] = meta_embed
|
||||
else:
|
||||
self._append_meta_embed["fixed"] = torch.cat(
|
||||
(self._append_meta_embed["fixed"], meta_embed), dim=0
|
||||
)
|
||||
|
||||
def forward_raw(self, timestamps):
|
||||
# timestamps is a batch of sequence of timestamps
|
||||
batch, seq = timestamps.shape
|
||||
timestamps = timestamps.unsqueeze(dim=-1)
|
||||
meta_timestamps = self._meta_timestamps.view(1, 1, -1)
|
||||
meta_timestamps = self.meta_timestamps.view(1, 1, -1)
|
||||
time_diffs = timestamps - meta_timestamps
|
||||
time_match_v, time_match_i = torch.min(torch.abs(time_diffs), dim=-1)
|
||||
# select corresponding meta-knowledge
|
||||
meta_match = torch.index_select(
|
||||
self._super_meta_embed, dim=0, index=time_match_i.view(-1)
|
||||
self.super_meta_embed, dim=0, index=time_match_i.view(-1)
|
||||
)
|
||||
meta_match = meta_match.view(batch, seq, -1)
|
||||
# create the probability
|
||||
time_probs = (1 / torch.exp(time_match_v * 10)).view(batch, seq, 1)
|
||||
time_probs[:, -1, :] = 0
|
||||
if self.training:
|
||||
time_probs[:, -1, :] = 0
|
||||
unknown_token = self._unknown_token.view(1, 1, -1)
|
||||
raw_meta_embed = time_probs * meta_match + (1 - time_probs) * unknown_token
|
||||
|
||||
|
Reference in New Issue
Block a user