Update GeMOSA v4

This commit is contained in:
D-X-Y
2021-05-27 17:30:44 +08:00
parent 1ce0b80776
commit b6e11c6360
8 changed files with 147 additions and 39 deletions

View File

@@ -10,5 +10,10 @@ from .math_static_funcs import (
ComposedSinSFunc,
ComposedCosSFunc,
)
from .math_dynamic_funcs import LinearDFunc, QuadraticDFunc, SinQuadraticDFunc
from .math_dynamic_generator import GaussianDGenerator
from .math_dynamic_funcs import (
LinearDFunc,
QuadraticDFunc,
SinQuadraticDFunc,
BinaryQuadraticDFunc,
)
from .math_dynamic_generator import UniformDGenerator, GaussianDGenerator

View File

@@ -20,7 +20,9 @@ class DynamicFunc(MathFunc):
def noise_call(self, x, timestamp, std):
clean_y = self.__call__(x, timestamp)
if isinstance(clean_y, np.ndarray):
if std is None:
noise_y = clean_y
elif isinstance(clean_y, np.ndarray):
noise_y = clean_y + np.random.normal(scale=std, size=clean_y.shape)
else:
raise ValueError("Unkonwn type: {:}".format(type(clean_y)))
@@ -43,7 +45,7 @@ class LinearDFunc(DynamicFunc):
return a * x + b
def __repr__(self):
return "{name}({a} * {x} + {b})".format(
return "({a} * {x} + {b})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],
@@ -69,7 +71,7 @@ class QuadraticDFunc(DynamicFunc):
return a * x * x + b * x + c
def __repr__(self):
return "{name}({a} * {x}^2 + {b} * {x} + {c})".format(
return "({a} * {x}^2 + {b} * {x} + {c})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],
@@ -97,6 +99,39 @@ class SinQuadraticDFunc(DynamicFunc):
def __repr__(self):
return "{name}({a} * {x}^2 + {b} * {x} + {c})".format(
name="Sin",
a=self._params[0],
b=self._params[1],
c=self._params[2],
x=self.xstr,
)
class BinaryQuadraticDFunc(DynamicFunc):
"""The dynamic quadratic function that outputs f(x) = a * x[0]^2 + b * x[1] + c >= 0.
The a, b, and c is a function of timestamp.
"""
def __init__(self, params=None):
super(BinaryQuadraticDFunc, self).__init__(3, params)
def __call__(self, x, timestamp):
self.check_valid()
a = self._params[0](timestamp)
b = self._params[1](timestamp)
c = self._params[2](timestamp)
convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x
a, b, c = convert_fn(a), convert_fn(b), convert_fn(c)
if isinstance(x, np.ndarray) and x.shape[-1] == 2:
results = a * x[..., 0] * x[..., 0] + b * x[..., 1] + c
return (results >= 0).astype(np.int)
else:
raise ValueError(
"Either the type {:} or the shape is incorrect.".format(type(x))
)
def __repr__(self):
return "({a} * {x}[0]^2 + {b} * {x}[1] + {c} >= 0)".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],

View File

@@ -20,6 +20,37 @@ class DynamicGenerator(abc.ABC):
raise NotImplementedError
class UniformDGenerator(DynamicGenerator):
"""Generate data from the uniform distribution."""
def __init__(self, l_functors, r_functors):
super(UniformDGenerator, self).__init__()
self._ndim = assert_list_tuple(l_functors)
assert self._ndim == assert_list_tuple(r_functors)
self._l_functors = l_functors
self._r_functors = r_functors
@property
def ndim(self):
return self._ndim
def output_shape(self):
return (self._ndim,)
def __call__(self, time, num):
l_list = [functor(time) for functor in self._l_functors]
r_list = [functor(time) for functor in self._r_functors]
values = []
for l, r in zip(l_list, r_list):
values.append(np.random.uniform(low=l, high=r, size=num))
return np.stack(values, axis=-1)
def __repr__(self):
return "{name}({ndim} dims)".format(
name=self.__class__.__name__, ndim=self._ndim
)
class GaussianDGenerator(DynamicGenerator):
"""Generate data from Gaussian distribution."""

View File

@@ -47,7 +47,7 @@ class LinearSFunc(StaticFunc):
return weights[0] * x + weights[1]
def __repr__(self):
return "{name}({a} * {x} + {b})".format(
return "({a} * {x} + {b})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],
@@ -69,7 +69,7 @@ class QuadraticSFunc(StaticFunc):
return weights[0] * x * x + weights[1] * x + weights[2]
def __repr__(self):
return "{name}({a} * {x}^2 + {b} * {x} + {c})".format(
return "({a} * {x}^2 + {b} * {x} + {c})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],
@@ -97,7 +97,7 @@ class CubicSFunc(StaticFunc):
return weights[0] * x ** 3 + weights[1] * x ** 2 + weights[2] * x + weights[3]
def __repr__(self):
return "{name}({a} * {x}^3 + {b} * {x}^2 + {c} * {x} + {d})".format(
return "({a} * {x}^3 + {b} * {x}^2 + {c} * {x} + {d})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],
@@ -166,7 +166,7 @@ class ConstantFunc(StaticFunc):
raise NotImplementedError
def __repr__(self):
return "{name}({a})".format(name=self.__class__.__name__, a=self._params[0])
return "{a}".format(name=self.__class__.__name__, a=self._params[0])
class ComposedSinSFunc(StaticFunc):
@@ -188,7 +188,7 @@ class ComposedSinSFunc(StaticFunc):
raise NotImplementedError
def __repr__(self):
return "{name}({a} * sin({b} * {x}) + {c})".format(
return "({a} * sin({b} * {x}) + {c})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],
@@ -216,7 +216,7 @@ class ComposedCosSFunc(StaticFunc):
raise NotImplementedError
def __repr__(self):
return "{name}({a} * sin({b} * {x}) + {c})".format(
return "({a} * sin({b} * {x}) + {c})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],

View File

@@ -3,13 +3,13 @@ from .synthetic_utils import TimeStamp
from .synthetic_env import SyntheticDEnv
from .math_core import LinearSFunc
from .math_core import LinearDFunc
from .math_core import QuadraticDFunc, SinQuadraticDFunc
from .math_core import QuadraticDFunc, SinQuadraticDFunc, BinaryQuadraticDFunc
from .math_core import (
ConstantFunc,
ComposedSinSFunc as SinFunc,
ComposedCosSFunc as CosFunc,
)
from .math_core import GaussianDGenerator
from .math_core import UniformDGenerator, GaussianDGenerator
__all__ = ["TimeStamp", "SyntheticDEnv", "get_synthetic_env"]
@@ -77,8 +77,21 @@ def get_synthetic_env(total_timestamp=1600, num_per_task=1000, mode=None, versio
)
dynamic_env.set_regression()
elif version.lower() == "v4":
l_generator = ConstantFunc(-2)
r_generator = ConstantFunc(2)
data_generator = UniformDGenerator([l_generator] * 2, [r_generator] * 2)
time_generator = TimeStamp(
min_timestamp=0, max_timestamp=max_time, num=total_timestamp, mode=mode
)
oracle_map = BinaryQuadraticDFunc(
params={
0: SinFunc(params={0: 1, 1: 3, 2: 0}), # sin(3 * t)
1: CosFunc(params={0: 1, 1: 6, 2: 0}), # cos(6 * t)
2: ConstantFunc(0),
}
)
dynamic_env = SyntheticDEnv(
data_generator, oracle_map, time_generator, num_per_task, noise=0.05
data_generator, oracle_map, time_generator, num_per_task, noise=None
)
dynamic_env.set_classification(2)
else:

View File

@@ -119,10 +119,15 @@ class SyntheticDEnv(data.Dataset):
def __call__(self, timestamp):
dataset = self._data_generator(timestamp, self._num_per_task)
targets = self._oracle_map.noise_call(dataset, timestamp, self._noise)
return torch.Tensor([timestamp]), (
torch.Tensor(dataset),
torch.Tensor(targets),
)
if isinstance(dataset, np.ndarray):
dataset = torch.from_numpy(dataset)
else:
dataset = torch.Tensor(dataset)
if isinstance(targets, np.ndarray):
targets = torch.from_numpy(targets)
else:
targets = torch.Tensor(targets)
return torch.Tensor([timestamp]), (dataset, targets)
def __len__(self):
return len(self._time_generator)