Update NATS (sss) algorithms -- warmup
This commit is contained in:
@@ -1,6 +1,10 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
# Here, we utilized three techniques to search for the number of channels:
|
||||
# - feature interpaltion from "Network Pruning via Transformable Architecture Search, NeurIPS 2019"
|
||||
# - masking + GumbelSoftmax from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020"
|
||||
# - masking + sampling from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020"
|
||||
from typing import List, Text, Any
|
||||
import random, torch
|
||||
import torch.nn as nn
|
||||
@@ -43,6 +47,7 @@ class GenericNAS301Model(nn.Module):
|
||||
# algorithm related
|
||||
self.register_buffer('_tau', torch.zeros(1))
|
||||
self._algo = None
|
||||
self._warmup_ratio = None
|
||||
|
||||
def set_algo(self, algo: Text):
|
||||
# used for searching
|
||||
@@ -62,6 +67,13 @@ class GenericNAS301Model(nn.Module):
|
||||
def set_tau(self, tau):
|
||||
self._tau.data[:] = tau
|
||||
|
||||
@property
|
||||
def warmup_ratio(self):
|
||||
return self._warmup_ratio
|
||||
|
||||
def set_warmup_ratio(self, ratio: float):
|
||||
self._warmup_ratio = ratio
|
||||
|
||||
@property
|
||||
def weights(self):
|
||||
xlist = list(self._cells.parameters())
|
||||
@@ -112,7 +124,13 @@ class GenericNAS301Model(nn.Module):
|
||||
feature = cell(feature)
|
||||
# apply different searching algorithms
|
||||
idx = max(0, i-1)
|
||||
if self._algo == 'fbv2':
|
||||
if self._warmup_ratio is not None:
|
||||
if random.random() < self._warmup_ratio:
|
||||
mask = self._masks[-1]
|
||||
else:
|
||||
mask = self._masks[random.randint(0, len(self._masks)-1)]
|
||||
feature = feature * mask.view(1, -1, 1, 1)
|
||||
elif self._algo == 'fbv2':
|
||||
weights = nn.functional.gumbel_softmax(self._arch_parameters[idx:idx+1], tau=self.tau, dim=-1)
|
||||
mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1)
|
||||
feature = feature * mask
|
||||
|
Reference in New Issue
Block a user