Update Warmup
This commit is contained in:
@@ -2,8 +2,8 @@
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
# Here, we utilized three techniques to search for the number of channels:
|
||||
# - feature interpaltion from "Network Pruning via Transformable Architecture Search, NeurIPS 2019"
|
||||
# - masking + GumbelSoftmax from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020"
|
||||
# - channel-wise interpaltion from "Network Pruning via Transformable Architecture Search, NeurIPS 2019"
|
||||
# - masking + Gumbel-Softmax from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020"
|
||||
# - masking + sampling from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020"
|
||||
from typing import List, Text, Any
|
||||
import random, torch
|
||||
@@ -55,10 +55,10 @@ class GenericNAS301Model(nn.Module):
|
||||
assert algo in ['fbv2', 'tunas', 'tas'], 'invalid algo : {:}'.format(algo)
|
||||
self._algo = algo
|
||||
self._arch_parameters = nn.Parameter(1e-3*torch.randn(self._max_num_Cs, len(self._candidate_Cs)))
|
||||
if algo == 'fbv2' or algo == 'tunas':
|
||||
self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs)))
|
||||
for i in range(len(self._candidate_Cs)):
|
||||
self._masks.data[i, :self._candidate_Cs[i]] = 1
|
||||
# if algo == 'fbv2' or algo == 'tunas':
|
||||
self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs)))
|
||||
for i in range(len(self._candidate_Cs)):
|
||||
self._masks.data[i, :self._candidate_Cs[i]] = 1
|
||||
|
||||
@property
|
||||
def tau(self):
|
||||
|
Reference in New Issue
Block a user