Update yaml configs

This commit is contained in:
D-X-Y
2021-06-10 21:53:22 +08:00
parent 1a7440d2af
commit 9bf0fa5f04
21 changed files with 410 additions and 178 deletions

View File

@@ -3,7 +3,7 @@
#####################################################
# python exps/basic/xmain.py --save_dir outputs/x #
#####################################################
import sys, time, torch, random, argparse
import os, sys, time, torch, random, argparse
from copy import deepcopy
from pathlib import Path
@@ -12,24 +12,38 @@ print("LIB-DIR: {:}".format(lib_dir))
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from xautodl.xmisc import nested_call_by_yaml
from xautodl import xmisc
def main(args):
train_data = nested_call_by_yaml(args.train_data_config, args.data_path)
valid_data = nested_call_by_yaml(args.valid_data_config, args.data_path)
train_data = xmisc.nested_call_by_yaml(args.train_data_config, args.data_path)
valid_data = xmisc.nested_call_by_yaml(args.valid_data_config, args.data_path)
logger = xmisc.Logger(args.save_dir, prefix="seed-{:}-".format(args.rand_seed))
import pdb
pdb.set_trace()
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(
args.dataset, args.data_path, args.cutout_length
logger.log("Create the logger: {:}".format(logger))
logger.log("Arguments : -------------------------------")
for name, value in args._get_kwargs():
logger.log("{:16} : {:}".format(name, value))
logger.log("Python Version : {:}".format(sys.version.replace("\n", " ")))
logger.log("PyTorch Version : {:}".format(torch.__version__))
logger.log("cuDNN Version : {:}".format(torch.backends.cudnn.version()))
logger.log("CUDA available : {:}".format(torch.cuda.is_available()))
logger.log("CUDA GPU numbers : {:}".format(torch.cuda.device_count()))
logger.log(
"CUDA_VISIBLE_DEVICES : {:}".format(
os.environ["CUDA_VISIBLE_DEVICES"]
if "CUDA_VISIBLE_DEVICES" in os.environ
else "None"
)
)
logger.log("The training data is:\n{:}".format(train_data))
logger.log("The validation data is:\n{:}".format(valid_data))
model = xmisc.nested_call_by_yaml(args.model_config)
logger.log("The model is:\n{:}".format(model))
logger.log("The model size is {:.4f} M".format(xmisc.count_parameters(model)))
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batch_size,
@@ -44,100 +58,25 @@ def main(args):
num_workers=args.workers,
pin_memory=True,
)
# get configures
model_config = load_config(args.model_config, {"class_num": class_num}, logger)
optim_config = load_config(args.optim_config, {"class_num": class_num}, logger)
if args.model_source == "normal":
base_model = obtain_model(model_config)
elif args.model_source == "nas":
base_model = obtain_nas_infer_model(model_config, args.extra_model_path)
elif args.model_source == "autodl-searched":
base_model = obtain_model(model_config, args.extra_model_path)
elif args.model_source in ("x", "xmodel"):
base_model = obtain_xmodel(model_config)
else:
raise ValueError("invalid model-source : {:}".format(args.model_source))
flop, param = get_model_infos(base_model, xshape)
logger.log("model ====>>>>:\n{:}".format(base_model))
logger.log("model information : {:}".format(base_model.get_message()))
logger.log("-" * 50)
logger.log(
"Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(
param, flop, flop / 1e3
)
logger.log("The training loader: {:}".format(train_loader))
logger.log("The validation loader: {:}".format(valid_loader))
optimizer = xmisc.nested_call_by_yaml(
args.optim_config,
model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
)
logger.log("-" * 50)
logger.log("train_data : {:}".format(train_data))
logger.log("valid_data : {:}".format(valid_data))
optimizer, scheduler, criterion = get_optim_scheduler(
base_model.parameters(), optim_config
)
logger.log("optimizer : {:}".format(optimizer))
logger.log("scheduler : {:}".format(scheduler))
logger.log("criterion : {:}".format(criterion))
loss = xmisc.nested_call_by_yaml(args.loss_config)
last_info, model_base_path, model_best_path = (
logger.path("info"),
logger.path("model"),
logger.path("best"),
)
network, criterion = torch.nn.DataParallel(base_model).cuda(), criterion.cuda()
logger.log("The optimizer is:\n{:}".format(optimizer))
logger.log("The loss is {:}".format(loss))
if last_info.exists(): # automatically resume from previous checkpoint
logger.log(
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
)
last_infox = torch.load(last_info)
start_epoch = last_infox["epoch"] + 1
last_checkpoint_path = last_infox["last_checkpoint"]
if not last_checkpoint_path.exists():
logger.log(
"Does not find {:}, try another path".format(last_checkpoint_path)
)
last_checkpoint_path = (
last_info.parent
/ last_checkpoint_path.parent.name
/ last_checkpoint_path.name
)
checkpoint = torch.load(last_checkpoint_path)
base_model.load_state_dict(checkpoint["base-model"])
scheduler.load_state_dict(checkpoint["scheduler"])
optimizer.load_state_dict(checkpoint["optimizer"])
valid_accuracies = checkpoint["valid_accuracies"]
max_bytes = checkpoint["max_bytes"]
logger.log(
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
last_info, start_epoch
)
)
elif args.resume is not None:
assert Path(args.resume).exists(), "Can not find the resume file : {:}".format(
args.resume
)
checkpoint = torch.load(args.resume)
start_epoch = checkpoint["epoch"] + 1
base_model.load_state_dict(checkpoint["base-model"])
scheduler.load_state_dict(checkpoint["scheduler"])
optimizer.load_state_dict(checkpoint["optimizer"])
valid_accuracies = checkpoint["valid_accuracies"]
max_bytes = checkpoint["max_bytes"]
logger.log(
"=> loading checkpoint from '{:}' start with {:}-th epoch.".format(
args.resume, start_epoch
)
)
elif args.init_model is not None:
assert Path(
args.init_model
).exists(), "Can not find the initialization file : {:}".format(args.init_model)
checkpoint = torch.load(args.init_model)
base_model.load_state_dict(checkpoint["base-model"])
start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
logger.log("=> initialize the model from {:}".format(args.init_model))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
model, loss = torch.nn.DataParallel(model).cuda(), loss.cuda()
import pdb
pdb.set_trace()
train_func, valid_func = get_procedures(args.procedure)
@@ -284,7 +223,7 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Train a model with a loss function.",
description="Train a classification model with a loss function.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
@@ -293,27 +232,21 @@ if __name__ == "__main__":
parser.add_argument("--resume", type=str, help="Resume path.")
parser.add_argument("--init_model", type=str, help="The initialization model path.")
parser.add_argument("--model_config", type=str, help="The path to the model config")
parser.add_argument("--optim_config", type=str, help="The optimizer config file.")
parser.add_argument("--loss_config", type=str, help="The loss config file.")
parser.add_argument(
"--optim_config", type=str, help="The path to the optimizer config"
"--train_data_config", type=str, help="The training dataset config path."
)
parser.add_argument(
"--train_data_config", type=str, help="The dataset config path."
)
parser.add_argument(
"--valid_data_config", type=str, help="The dataset config path."
)
parser.add_argument(
"--data_path", type=str, help="The path to the dataset."
"--valid_data_config", type=str, help="The validation dataset config path."
)
parser.add_argument("--data_path", type=str, help="The path to the dataset.")
parser.add_argument("--algorithm", type=str, help="The algorithm.")
# Optimization options
parser.add_argument("--lr", type=float, help="The learning rate")
parser.add_argument("--weight_decay", type=float, help="The weight decay")
parser.add_argument("--batch_size", type=int, default=2, help="The batch size.")
parser.add_argument(
"--workers",
type=int,
default=8,
help="number of data loading workers (default: 8)",
)
parser.add_argument("--workers", type=int, default=4, help="The number of workers")
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")