update CVPR-2019-GDAS re-train NASNet-search-space searched models
This commit is contained in:
71
lib/models/cell_infers/nasnet_cifar.py
Normal file
71
lib/models/cell_infers/nasnet_cifar.py
Normal file
@@ -0,0 +1,71 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetonCIFAR(nn.Module):
|
||||
|
||||
def __init__(self, C, N, stem_multiplier, num_classes, genotype, auxiliary, affine=True, track_running_stats=True):
|
||||
super(NASNetonCIFAR, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C*stem_multiplier))
|
||||
|
||||
# config for each layer
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
|
||||
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
|
||||
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
|
||||
self.auxiliary_index = None
|
||||
self.auxiliary_head = None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
cell = InferCell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
|
||||
self.cells.append( cell )
|
||||
C_prev_prev, C_prev, reduction_prev = C_prev, cell._multiplier*C_curr, reduction
|
||||
if reduction and C_curr == C*4 and auxiliary:
|
||||
self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes)
|
||||
self.auxiliary_index = index
|
||||
self._Layer = len(self.cells)
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.drop_path_prob = -1
|
||||
|
||||
def update_drop_path(self, drop_path_prob):
|
||||
self.drop_path_prob = drop_path_prob
|
||||
|
||||
def auxiliary_param(self):
|
||||
if self.auxiliary_head is None: return []
|
||||
else: return list( self.auxiliary_head.parameters() )
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def forward(self, inputs):
|
||||
stem_feature, logits_aux = self.stem(inputs), None
|
||||
cell_results = [stem_feature, stem_feature]
|
||||
for i, cell in enumerate(self.cells):
|
||||
cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob)
|
||||
cell_results.append( cell_feature )
|
||||
if self.auxiliary_index is not None and i == self.auxiliary_index and self.training:
|
||||
logits_aux = self.auxiliary_head( cell_results[-1] )
|
||||
out = self.lastact(cell_results[-1])
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
if logits_aux is None: return out, logits
|
||||
else: return out, [logits, logits_aux]
|
Reference in New Issue
Block a user