Move to xautodl
This commit is contained in:
123
xautodl/xlayers/super_transformer.py
Normal file
123
xautodl/xlayers/super_transformer.py
Normal file
@@ -0,0 +1,123 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Optional, Callable
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import spaces
|
||||
from .super_module import IntSpaceType
|
||||
from .super_module import BoolSpaceType
|
||||
from .super_module import LayerOrder
|
||||
from .super_module import SuperModule
|
||||
from .super_linear import SuperMLPv2
|
||||
from .super_norm import SuperLayerNorm1D
|
||||
from .super_attention import SuperAttention
|
||||
|
||||
|
||||
class SuperTransformerEncoderLayer(SuperModule):
|
||||
"""TransformerEncoderLayer is made up of self-attn and feedforward network.
|
||||
This is a super model for TransformerEncoderLayer that can support search for the transformer encoder layer.
|
||||
|
||||
Reference:
|
||||
- Paper: Attention Is All You Need, NeurIPS 2017
|
||||
- PyTorch Implementation: https://pytorch.org/docs/stable/_modules/torch/nn/modules/transformer.html#TransformerEncoderLayer
|
||||
|
||||
Details:
|
||||
the original post-norm version: MHA -> residual -> norm -> MLP -> residual -> norm
|
||||
the pre-norm version: norm -> MHA -> residual -> norm -> MLP -> residual
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: IntSpaceType,
|
||||
num_heads: IntSpaceType,
|
||||
qkv_bias: BoolSpaceType = False,
|
||||
mlp_hidden_multiplier: IntSpaceType = 4,
|
||||
drop: Optional[float] = None,
|
||||
norm_affine: bool = True,
|
||||
act_layer: Callable[[], nn.Module] = nn.GELU,
|
||||
order: LayerOrder = LayerOrder.PreNorm,
|
||||
):
|
||||
super(SuperTransformerEncoderLayer, self).__init__()
|
||||
mha = SuperAttention(
|
||||
d_model,
|
||||
d_model,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
attn_drop=drop,
|
||||
proj_drop=drop,
|
||||
)
|
||||
mlp = SuperMLPv2(
|
||||
d_model,
|
||||
hidden_multiplier=mlp_hidden_multiplier,
|
||||
out_features=d_model,
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
)
|
||||
if order is LayerOrder.PreNorm:
|
||||
self.norm1 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
|
||||
self.mha = mha
|
||||
self.drop1 = nn.Dropout(drop or 0.0)
|
||||
self.norm2 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
|
||||
self.mlp = mlp
|
||||
self.drop2 = nn.Dropout(drop or 0.0)
|
||||
elif order is LayerOrder.PostNorm:
|
||||
self.mha = mha
|
||||
self.drop1 = nn.Dropout(drop or 0.0)
|
||||
self.norm1 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
|
||||
self.mlp = mlp
|
||||
self.drop2 = nn.Dropout(drop or 0.0)
|
||||
self.norm2 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
|
||||
else:
|
||||
raise ValueError("Unknown order: {:}".format(order))
|
||||
self._order = order
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
root_node = spaces.VirtualNode(id(self))
|
||||
xdict = dict(
|
||||
mha=self.mha.abstract_search_space,
|
||||
norm1=self.norm1.abstract_search_space,
|
||||
mlp=self.mlp.abstract_search_space,
|
||||
norm2=self.norm2.abstract_search_space,
|
||||
)
|
||||
for key, space in xdict.items():
|
||||
if not spaces.is_determined(space):
|
||||
root_node.append(key, space)
|
||||
return root_node
|
||||
|
||||
def apply_candidate(self, abstract_child: spaces.VirtualNode):
|
||||
super(SuperTransformerEncoderLayer, self).apply_candidate(abstract_child)
|
||||
valid_keys = ["mha", "norm1", "mlp", "norm2"]
|
||||
for key in valid_keys:
|
||||
if key in abstract_child:
|
||||
getattr(self, key).apply_candidate(abstract_child[key])
|
||||
|
||||
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||
return self.forward_raw(input)
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
if self._order is LayerOrder.PreNorm:
|
||||
x = self.norm1(input)
|
||||
x = x + self.drop1(self.mha(x))
|
||||
x = self.norm2(x)
|
||||
x = x + self.drop2(self.mlp(x))
|
||||
elif self._order is LayerOrder.PostNorm:
|
||||
# multi-head attention
|
||||
x = self.mha(input)
|
||||
x = x + self.drop1(x)
|
||||
x = self.norm1(x)
|
||||
# feed-forward layer
|
||||
x = x + self.drop2(self.mlp(x))
|
||||
x = self.norm2(x)
|
||||
else:
|
||||
raise ValueError("Unknown order: {:}".format(self._order))
|
||||
return x
|
Reference in New Issue
Block a user